ﻻ يوجد ملخص باللغة العربية
We study anisotropic fluid dynamics derived from the Boltzmann equation based on a particular choice for the anisotropic distribution function within a boost-invariant expansion of the fluid in one spatial dimension. In order to close the conservation equations we need to choose an additional moment of the Boltzmann equation. We discuss the influence of this choice of closure on the time evolution of fluid-dynamical variables and search for the best agreement to the solution of the Boltzmann equation in the relaxation-time approximation.
In Molnar et al. [Phys. Rev. D 93, 114025 (2016)] the equations of anisotropic dissipative fluid dynamics were obtained from the moments of the Boltzmann equation based on an expansion around an arbitrary anisotropic single-particle distribution func
Fluid-dynamical equations of motion can be derived from the Boltzmann equation in terms of an expansion around a single-particle distribution function which is in local thermodynamical equilibrium, i.e., isotropic in momentum space in the rest frame
Starting from the linear sigma model with constituent quarks we derive the chiral fluid dynamics where hydrodynamic equations for the quark fluid are coupled to the equation of motion for the order-parameter field. In a static system at thermal equil
We present a fully dynamical model to study the chiral and deconfinement transition of QCD simultaneously. The quark degrees of freedom constitute a heat bath in local equilibrium for both order parameters, the sigma field and a dynamical Polyakov lo
In an era of high-precision determinations of QGP properties a full incorporation of fluid dynamical fluctuations into our models has become crucial, in particular, when describing the dynamics of small systems or near the conjectured QCD critical po