ترغب بنشر مسار تعليمي؟ اضغط هنا

Eigenspaces of symmetric graphs are not typically irreducible

122   0   0.0 ( 0 )
 نشر من قبل Gregory Berkolaiko
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct rich families of Schrodinger operators on symmetric graphs, both quantum and combinatorial, whose spectral degeneracies are persistently larger than the maximal dimension of an irreducible representations of the symmetry group.



قيم البحث

اقرأ أيضاً

We investigate spectral properties of Kirchhoff Laplacians on radially symmetric antitrees. This class of metric graphs enjoys a rich group of symmetries, which enables us to obtain a decomposition of the corresponding Laplacian into the orthogonal s um of Sturm--Liouville operators. In contrast to the case of radially symmetric trees, the deficiency indices of the Laplacian defined on the minimal domain are at most one and they are equal to one exactly when the corresponding metric antitree has finite total volume. In this case, we provide an explicit description of all self-adjoint extensions including the Friedrichs extension. Furthermore, using the spectral theory of Krein strings, we perform a thorough spectral analysis of this model. In particular, we obtain discreteness and trace class criteria, criterion for the Kirchhoff Laplacian to be uniformly positive and provide spectral gap estimates. We show that the absolutely continuous spectrum is in a certain sense a rare event, however, we also present several classes of antitrees such that the absolutely continuous spectrum of the corresponding Laplacian is $[0,infty)$.
237 - Bobo Hua , Lili Wang 2018
In this paper, we study eigenvalues and eigenfunctions of $p$-Laplacians with Dirichlet boundary condition on graphs. We characterize the first eigenfunction (and the maximum eigenfunction for a bipartite graph) via the sign condition. By the uniquen ess of the first eigenfunction of $p$-Laplacian, as $pto 1,$ we identify the Cheeger constant of a symmetric graph with that of the quotient graph. By this approach, we calculate various Cheeger constants of spherically symmetric graphs.
364 - S. A. Fulling , P. Kuchment , 2007
In geometric analysis, an index theorem relates the difference of the numbers of solutions of two differential equations to the topological structure of the manifold or bundle concerned, sometimes using the heat kernels of two higher-order differenti al operators as an intermediary. In this paper, the case of quantum graphs is addressed. A quantum graph is a graph considered as a (singular) one-dimensional variety and equipped with a second-order differential Hamiltonian H (a Laplacian) with suitable conditions at vertices. For the case of scale-invariant vertex conditions (i.e., conditions that do not mix the values of functions and of their derivatives), the constant term of the heat-kernel expansion is shown to be proportional to the trace of the internal scattering matrix of the graph. This observation is placed into the index-theory context by factoring the Laplacian into two first-order operators, H =A*A, and relating the constant term to the index of A. An independent consideration provides an index formula for any differential operator on a finite quantum graph in terms of the vertex conditions. It is found also that the algebraic multiplicity of 0 as a root of the secular determinant of H is the sum of the nullities of A and A*.
Let $Gamma$ be an arbitrary $mathbb{Z}^n$-periodic metric graph, which does not coincide with a line. We consider the Hamiltonian $mathcal{H}_varepsilon$ on $Gamma$ with the action $-varepsilon^{-1}{mathrm{d}^2/mathrm{d} x^2}$ on its edges; here $var epsilon>0$ is a small parameter. Let $minmathbb{N}$. We show that under a proper choice of vertex conditions the spectrum $sigma(mathcal{H}^varepsilon)$ of $mathcal{H}^varepsilon$ has at least $m$ gaps as $varepsilon$ is small enough. We demonstrate that the asymptotic behavior of these gaps and the asymptotic behavior of the bottom of $sigma(mathcal{H}^varepsilon)$ as $varepsilonto 0$ can be completely controlled through a suitable choice of coupling constants standing in those vertex conditions. We also show how to ensure for fixed (small enough) $varepsilon$ the precise coincidence of the left endpoints of the first $m$ spectral gaps with predefined numbers.
This work offers a new prospective on asymptotic perturbation theory for varying self-adjoint extensions of symmetric operators. Employing symplectic formulation of self-adjointness we obtain a new version of Krein formula for resolvent difference wh ich facilitates asymptotic analysis of resolvent operators via first order expansion for the family of Lagrangian planes associated with perturbed operators. Specifically, we derive a Riccati-type differential equation and the first order asymptotic expansion for resolvents of self-adjoint extensions determined by smooth one-parameter families of Lagrangian planes. This asymptotic perturbation theory yields a symplectic version of the abstract Kato selection theorem and Hadamard-Rellich-type variational formula for slopes of multiple eigenvalue curves bifurcating from an eigenvalue of the unperturbed operator. The latter, in turn, gives a general infinitesimal version of the celebrated formula equating the spectral flow of a path of self-adjoint extensions and the Maslov index of the corresponding path of Lagrangian planes. Applications are given to quantum graphs, periodic Kronig-Penney model, elliptic second order partial differential operators with Robin boundary conditions, and physically relevant heat equations with thermal conductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا