ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory of Ultra Low Tc Superconductivity in Bismuth: Tip of an Iceberg ?

90   0   0.0 ( 0 )
 نشر من قبل Ganapathy Baskaran
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. Baskaran




اسأل ChatGPT حول البحث

Superconductivity with an ultra low Tc $sim$ 0.5 mK was discovered recently in bismuth, a semimetal. To develop a model and scenario for Bi we begin with a cubic reference lattice, close to A7 (dimerized cubic) structure of Bi. Three valence electrons hop among 6p$_x$, 6p$_y$ and 6p$_z$ orbitals and form textit{quasi one dimensional chains at half filling}. An interesting interplay follows: i) Mott localization tendency in the chains, ii) metallization by interchain hopping and iii) lattice dimerization by electron-phonon coupling. In our proposal, a potential high Tc superconductivity from RVB mechanism is lost in the game. However some superconducting fluctuations survive. Tiny fermi pockets seen in Bi are viewed as remnant textit{evanescent Bogoliubov quasi particles} in an anomalous normal state. Multi band character admits possibility of PT violating textit{chiral singlet superconductivity}. Bi has a strong spin orbit coupling; Kramers theorem protects our proposal for the bulk by replacing real spin by Kramer pair. Control of chain dimerization might resurrect high Tc superconductivity in Bi, Sb and As.



قيم البحث

اقرأ أيضاً

61 - G. Baskaran 2019
Monovalent metals contain half filled band (HFB) of s-electrons. Emphasizing importance of Coulomb repulsions in HFB in 2D and 1D monovalent systems we sketched a theory (2018) for ambient temperature granular superconductivity reported by Thapa and Pandey (2018) in Au-Ag nanostructures (updated by Thapa et al., 2019). Sharpening our theory, we suggest that textit{Coulomb repulsions in certain structurally perturbed regions (atomic clusters, stacking faults, grain boundaries etc.) create nanoscale reservoirs of singlet electron pairs}. These low dimensional patches are hybridized to a background 3D jellium metal and produce observed ambient Tc granular superconductivity via proximity Josephson effect. Using repulsive Hubbard model we show presence of singlet reservoirs and physics of doped Mott insulators. Needed charge transfer arises from differing electronegativities. Our theory predicts that textit{all elemental monovalent (alkali, Cu, Ag and Au) metals, under suitable structural perturbations, are likely to exhibit ambient temperature superconductivity}.
Very recent report [1] on observation of superconductivity in Bi4O4S3 could potentially reignite the search for superconductivity in a broad range of layered sulphides. We report here synthesis of Bi4O4S3 at 5000C by vacuum encapsulation technique an d basic characterizations. Detailed structural, magnetization, and electrical transport results are reported. Bi4O4S3 is contaminated by small amounts of Bi2S3 and Bi impurities. The majority phase is tetragonal I4/mmm space group with lattice parameters a = 3.9697(2){AA}, c = 41.3520(1){AA}. Both AC and DC magnetization measurements confirmed that Bi4O4S3 is a bulk superconductor with superconducting transition temperature (Tc) of 4.4K. Isothermal magnetization (MH) measurements indicated closed loops with clear signatures of flux pinning and irreversible behavior. The lower critical field (Hc1) at 2K, of the new superconductor is found to be ~39 Oe. The magneto-transport R(T, H) measurements showed a resistive broadening and decrease in Tc (R=0) to lower temperatures with increasing magnetic field. The extrapolated upper critical field Hc2(0) is ~ 310kOe with a corresponding Ginzburg-Landau coherence length of ~100{AA} . In the normal state the {rho} ~ T2 is not indicated. Our magnetization and electrical transport measurements substantiate the appearance of bulk superconductivity in as synthesized Bi4O4S3. On the other hand same temperature heat treated Bi is not superconducting, thus excluding possibility of impurity driven superconductivity in the newly discovered Bi4O4S3 superconductor.
The superconducting transition temperatures of high-Tc compounds based on copper, iron, ruthenium and certain organic molecules are discovered to be dependent on bond lengths, ionic valences, and Coulomb coupling between electronic bands in adjacent, spatially separated layers [1]. Optimal transition temperature, denoted as T_c0, is given by the universal expression $k_BT_c0 = e^2 Lambda / ellzeta$; $ell$ is the spacing between interacting charges within the layers, zeta is the distance between interacting layers and Lambda is a universal constant, equal to about twice the reduced electron Compton wavelength (suggesting that Compton scattering plays a role in pairing). Non-optimum compounds in which sample degradation is evident typically exhibit Tc < T_c0. For the 31+ optimum compounds tested, the theoretical and experimental T_c0 agree statistically to within +/- 1.4 K. The elemental high Tc building block comprises two adjacent and spatially separated charge layers; the factor e^2/zeta arises from Coulomb forces between them. The theoretical charge structure representing a room-temperature superconductor is also presented.
107 - B. Lei , J. H. Cui , Z. J. Xiang 2015
In contrast to bulk FeSe superconductor, heavily electron-doped FeSe-derived superconductors show relatively high Tc without hole Fermi surfaces and nodal superconducting gap structure, which pose great challenges on pairing theories in the iron-base d superconductors. In the heavily electron-doped FeSe-based superconductors, the dominant factors and the exact working mechanism that is responsible for the high Tc need to be clarified. In particular, a clean control of carrier concentration remains to be a challenge for revealing how superconductivity and Fermi surface topology evolves with carrier concentration in bulk FeSe. Here, we report the evolution of superconductivity in the FeSe thin flake with systematically regulated carrier concentrations by liquid-gating technique. High-temperature superconductivity at 48 K can be achieved only with electron doping tuned by gate voltage in FeSe thin flake with Tc less than 10 K. This is the first time to achieve such a high temperature superconductivity in FeSe without either epitaxial interface or external pressure. It definitely proves that the simple electron-doping process is able to induce high-temperature superconductivity with Tc as high as 48 K in bulk FeSe. Intriguingly, our data also indicates that the superconductivity is suddenly changed from low-Tc phase to high-Tc phase with a Lifshitz transition at certain carrier concentration. These results help us to build a unified picture to understand the high-temperature superconductivity among all FeSe-derived superconductors and shed light on further pursuit of higher Tc in these materials.
Carrier injection performed in oxygen-deficient YBa2Cu3O7(YBCO) hetero-structure junctions exhibited tunable resistance that was entirely different with behaviors of semiconductor devices. Tunable superconductivity in YBCO junctions, increasing over 20 K in transition temperature, has achieved by using electric processes. To our knowledge, this is the first observation that intrinsic property of high TC superconductors superconductivity can be adjusted as tunable functional parameters of devices. The fantastic phenomenon caused by carrier injection was discussed based on a proposed charge carrier self-trapping model and BCS theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا