ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear Chiral Plasma Transport in Rotating Coordinates

187   0   0.0 ( 0 )
 نشر من قبل Omer Faruk Dayi
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nonlinear transport features of inhomogeneous chiral plasma in the presence of electromagnetic fields, in rotating coordinates are studied within the relaxation time approach. The chiral distribution functions up to second order in the electric field in rotating coordinates and the derivatives of chemical potentials are established by solving the Boltzmann transport equation. First, the vector and axial current densities in the weakly ionized chiral plasma for vanishing magnetic field are calculated. They involve the rotational analogues of the Hall effect as well as several new terms arising from the Coriolis and fictitious centrifugal forces. Then in the short relaxation time regime the angular velocity and electromagnetic fields are treated as perturbations. The current densities are obtained by retaining the terms up to second order in perturbations. The time evolution equations of the inhomogeneous chemical potentials are derived by demanding that collisions conserve the particle number densities.



قيم البحث

اقرأ أيضاً

The semiclassical kinetic theory of Dirac particles in the presence of external electromagnetic fields and global rotation is established. To provide the Hamiltonian formulation of Dirac particles a symplectic two-form which is a matrix in spin indic es is proposed. The particle number and current densities for the Dirac particles are acquired in the helicity basis. Following a similar procedure, semiclassical kinetic theory of the Weyl particles is accomplished. It is shown that the phase-space dynamics of the Weyl and Dirac particles is directly linked. The anomalous chiral effects due to the external electromagnetic fields and angular velocity of the frame are calculated.
Using the chiral kinetic theory we derive the electric and chiral current densities in inhomogeneous relativistic plasma. We also derive equations for the electric and chiral charge chemical potentials that close the Maxwell equations in such a plasm a. The analysis is done in the regimes with and without a drift of the plasma as a whole. In addition to the currents present in the homogeneous plasma (Hall current, chiral magnetic, chiral separation, and chiral electric separation effects, as well as Ohms current) we derive several new terms associated with inhomogeneities of the plasma. Apart from various diffusion-like terms, we find also new dissipation-less terms that are independent of relaxation time. Their origin can be traced to the Berry curvature modifications of the kinetic theory.
A modified quantum kinetic equation which takes account of the noninertial features of rotating frame is proposed. The vector and axial-vector field components of the Wigner function for chiral fluids are worked out in a semiclassical scheme. It is d emonstrated that the chiral currents and energy-momentum tensor computed by means of them are consistent with the hydrodynamical results. A new semiclassical covariant chiral transport equation is established by inspecting the equations satisfied by the chiral vector fields. It uniquely provides a new three-dimensional semiclassical chiral kinetic theory possessing a Coriolis force term. The particle number and current densities deduced from this transport equation satisfy the anomalous continuity equation and generate the magnetic and vortical effects correctly.
120 - O.F. Dayi , E. Kilincarslan 2019
Semiclassical chiral kinetic theories in the presence of electromagnetic fields as well as vorticity can be constructed by means of some different relativistic or nonrelativistic approaches. To cover the noninertial features of rotating frames one ca n start from the modified quantum kinetic equation of Wigner function in Minkowski spacetime. It provides a relativistic chiral transport equation whose nonrelativistic limit yields a consistent three-dimensional kinetic theory which does not depend explicitly on spatial coordinates. Recently a chiral transport equation in curved spacetime has been proposed and its nonrelativistic limit in rotating coordinates was considered in the absence of electromagnetic fields. We show that the modified theory can be extended to curved spacetime. The related particle current density and chiral transport equation for an inertial observer in the rotating frame are derived. A novel three-dimensional chiral kinetic transport equation is established by inspecting the nonrelativistic limit of the curved spacetime approach in the rotating frame for a comoving observer in the presence of electromagnetic fields. It explicitly depends on spatial coordinates. We prove that it is consistent with the chiral anomaly, chiral magnetic and vortical effects.
124 - O. F. Dayi , M. Elbistan 2009
A semiclassical constrained Hamiltonian system which was established to study dynamical systems of matrix valued non-Abelian gauge fields is employed to formulate spin Hall effect in noncommuting coordinates at the first order in the constant noncomm utativity parameter theta . The method is first illustrated by studying the Hall effect on the noncommutative plane in a gauge independent fashion. Then, the Drude model type and the Hall effect type formulations of spin Hall effect are considered in noncommuting coordinates and theta deformed spin Hall conductivities which they provide are acquired. It is shown that by adjusting theta different formulations of spin Hall conductivity are accomplished. Hence, the noncommutative theory can be envisaged as an effective theory which unifies different approaches to similar physical phenomena.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا