ترغب بنشر مسار تعليمي؟ اضغط هنا

Reconstruction of Lorentzian manifolds from boundary light observation sets

141   0   0.0 ( 0 )
 نشر من قبل Peter Hintz
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

On a time-oriented Lorentzian manifold $(M,g)$ with non-empty boundary satisfying a convexity assumption, we show that the topological, differentiable, and conformal structure of suitable subsets $Ssubset M$ of sources is uniquely determined by measurements of the intersection of future light cones from points in $S$ with a fixed open subset of the boundary of $M$; here, light rays are reflected at $partial M$ according to Snells law. Our proof is constructive, and allows for interior conjugate points as well as multiply reflected and self-intersecting light cones.



قيم البحث

اقرأ أيضاً

Lorentzian manifolds with parallel spinors are important objects of study in several branches of geometry, analysis and mathematical physics. Their Cauchy problem has recently been discussed by Baum, Leistner and Lischewski, who proved that the probl em locally has a unique solution up to diffeomorphisms, provided that the intial data given on a space-like hypersurface satisfy some constraint equations. In this article we provide a method to solve these constraint equations. In particular, any curve (resp. closed curve) in the moduli space of Riemannian metrics on $M$ with a parallel spinor gives rise to a solution of the constraint equations on $Mtimes (a,b)$ (resp. $Mtimes S^1$).
We describe three-dimensional Lorentzian homogeneous Ricci solitons, showing that all types (i.e. shrinking, expanding and steady) exist. Moreover, all non-trivial examples have non-diagonalizable Ricci operator with one only eigenvalue.
92 - Maxim Braverman 2018
We consider a hyperbolic Dirac-type operator with growing potential on a a spatially non-compact globally hyperbolic manifold. We show that the Atiyah-Patodi-Singer boundary value problem for such operator is Fredholm and obtain a formula for this in dex in terms of the local integrals and the relative eta-invariant introduced by Braverman and Shi. This extends recent results of Bar and Strohmaier, who studied the index of a hyperbolic Dirac operator on a spatially compact globally hyperbolic manifold.
Some analysis on the Lorentzian distance in a spacetime with controlled sectional (or Ricci) curvatures is done. In particular, we focus on the study of the restriction of such distance to a spacelike hypersurface satisfying the Omori-Yau maximum pri nciple. As a consequence, and under appropriate hypotheses on the (sectional or Ricci) curvatures of the ambient spacetime, we obtain sharp estimates for the mean curvature of those hypersurfaces. Moreover, we also give a suficient condition for its hyperbolicity.
We show that many standard results of Lorentzian causality theory remain valid if the regularity of the metric is reduced to $C^{1,1}$. Our approach is based on regularisations of the metric adapted to the causal structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا