Spectroscopy of multi-electrode tunnel barriers


الملخص بالإنكليزية

Despite their ubiquity in nanoscale electronic devices, the physics of tunnel barriers has not been developed to the extent necessary for the engineering of devices in the few-electron regime. This problem is of urgent interest, as this is the precise regime into which current, extreme-scale electronics fall. Here, we propose theoretically and validate experimentally a compact model for multi-electrode tunnel barriers, suitable for design-rules-based engineering of tunnel junctions in quantum devices. We perform transport spectroscopy at $T=4$ K, extracting effective barrier heights and widths for a wide range of biases, using an efficient Landauer-Buttiker tunneling model to perform the analysis. We find that the barrier height shows several regimes of voltage dependence, either linear or approximately exponential. The exponential dependence approximately correlates with the formation of an electron channel below an electrode. Effects on transport threshold, such as metal-insulator-transition and lateral confinement are non-negligible and included. We compare these results to semi-classical solutions of Poissons equation and find them to agree qualitatively. Finally, we characterize the sensitivity of a tunnel barrier that is raised or lowered without an electrode being directly above the barrier region.

تحميل البحث