ترغب بنشر مسار تعليمي؟ اضغط هنا

Prospects for axion detection in natural SUSY with mixed axion-higgsino dark matter: back to invisible?

87   0   0.0 ( 0 )
 نشر من قبل Howard Baer
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Under the expectation that nature is natural, we extend the Standard Model to include SUSY to stabilize the electroweak sector and PQ symmetry to stabilize the QCD sector. Then natural SUSY arises from a Kim-Nilles solution to the SUSY mu problem which allows for a little hierarchy where mu ~ f_a^2/M_P ~ 100-300 GeV while the SUSY particle mass scale m(SUSY)~ 1-10 TeV >> mu. Dark matter then consists of two particles: a higgsino-like WIMP and a SUSY DFSZ axion. The range of allowed axion mass values m(axion) depends on the mixed axion-higgsino relic density. The range of m(axion) is actually restricted in this case by limits on WIMPs from direct and indirect detection experiments. We plot the expected axion detection rate at microwave cavity experiments. The axion-photon-photon coupling is severely diminished by charged higgsino contributions to the anomalous coupling. In this case, the axion may retreat, at least temporarily, back into the regime of near invisibility. From our results, we urge new ideas for techniques which probe both deeper and more broadly into axion coupling versus axion mass parameter space.



قيم البحث

اقرأ أيضاً

86 - N. Du , N. Force , R. Khatiwada 2018
This Letter reports results from a haloscope search for dark matter axions with masses between 2.66 and 2.81 $mu$eV. The search excludes the range of axion-photon couplings predicted by plausible models of the invisible axion. This unprecedented sens itivity is achieved by operating a large-volume haloscope at sub-kelvin temperatures, thereby reducing thermal noise as well as the excess noise from the ultra-low-noise SQUID amplifier used for the signal power readout. Ongoing searches will provide nearly definitive tests of the invisible axion model over a wide range of axion masses.
This paper reports on a cavity haloscope search for dark matter axions in the galactic halo in the mass range $2.81$-$3.31$ ${mu}eV$. This search excludes the full range of axion-photon coupling values predicted in benchmark models of the invisible a xion that solve the strong CP problem of quantum chromodynamics, and marks the first time a haloscope search has been able to search for axions at mode crossings using an alternate cavity configuration. Unprecedented sensitivity in this higher mass range is achieved by deploying an ultra low-noise Josephson parametric amplifier as the first stage signal amplifier.
We propose a new broadband search strategy for ultralight axion dark matter that interacts with electromagnetism. An oscillating axion field induces transitions between two quasi-degenerate resonant modes of a superconducting cavity. In two broadband runs optimized for high and low masses, this setup can probe unexplored parameter space for axion-like particles covering fifteen orders of magnitude in mass, including astrophysically long-ranged fuzzy dark matter.
If there are a plethora of axions in nature, they may have a complicated potential and create an axion landscape. We study a possibility that one of the axions is so light that it is cosmologically stable, explaining the observed dark matter density. In particular we focus on a case in which two (or more) shift-symmetry breaking terms conspire to make the axion sufficiently light at the potential minimum. In this case the axion has a flat-bottomed potential. In contrast to the case in which a single cosine term dominates the potential, the axion abundance as well as its isocurvature perturbations are significantly suppressed. This allows an axion with a rather large mass to serve as dark matter without fine-tuning of the initial misalignment, and further makes higher-scale inflation to be consistent with the scenario.
The requirement of electroweak naturalness in supersymmetric (SUSY) models of particle physics necessitates light higgsinos not too far from the weak scale characterized by m(weak)~ m(W,Z,h)~100 GeV. On the other hand, LHC Higgs mass measurements and sparticle mass limits point to a SUSY breaking scale in the multi-TeV regime. Under such conditions, the lightest SUSY particle is expected to be a mainly higgsino-like neutralino with non-negligible gaugino components (required by naturalness). The computed thermal WIMP abundance in natural SUSY models is then found to be typically a factor 5-20 below its measured value. To gain concordance with observations, either an additional DM particle (the axion is a well-motivated possibility) must be present or additional non-thermal mechanisms must augment the neutralino abundance. We compare present direct and indirect WIMP detection limits to three natural SUSY models based on gravity-, anomaly- and mirage-mediation. We show that the case of natural higgsino-only dark matter where non-thermal production mechanisms augment its relic density, is essentially excluded by a combination of direct detection constraints from PandaX-II, LUX and Xenon-1t experiments, and by bounds from Fermi-LAT/MAGIC observations of gamma rays from dwarf spheroidal galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا