ﻻ يوجد ملخص باللغة العربية
Because the timescale of H$alpha$ emission (several tens of Myr) following star formation is significantly shorter than that of UV radiation (a few hundred Myr), the H$alpha$/UV flux ratio provides insight on the star formation histories (SFHs) of galaxies on timescales shorter than $sim100$ Myr. We present H$alpha$/UV ratios for galaxies at $z=$ 0.02--0.1 on the familiar star-forming main sequence based on the AKARI-GALEX-SDSS archive dataset. The data provide us with robust measurements of dust-corrected SFRs in both H$alpha$ and UV for 1,050 galaxies. The results show a correlation between the H$alpha$/UV ratio and the deviation from the main sequence in the sense that galaxies above/below the main sequence tend to have higher/lower H$alpha$/UV ratios. This trend increases the dispersion of the main sequence by 0.04 dex (a small fraction of the total scatter of 0.36 dex), suggesting that diversity of recent SFHs of galaxies has a direct impact on the observed main sequence scatter. We caution that the results suffer from incompleteness and a selection bias which may lead us to miss many sources with high H$alpha$/UV ratios, this could further increase the scatter from SFHs in the star-forming main sequence.
To investigate the variability of the star formation rate (SFR) of galaxies, we define a star formation change parameter, SFR$_{rm 5Myr}$/SFR$_{rm 800Myr}$ which is the ratio of the SFR averaged within the last 5 Myr to the SFR averaged within the la
Using star-forming galaxies sample in the nearby Universe (0.02<z<0.10) selected from the SDSS (DR7) and GALEX all-sky survey (GR5), we present a new empirical calibration for predicting dust extinction of galaxies from H-alpha-to-FUV flux ratio. We
We present the analysis of the integrated spectral energy distribution (SED) from the ultraviolet (UV) to the far-infrared and H$alpha$ of a sample of 29 local systems and individual galaxies with infrared (IR) luminosities between 10^11 Lsun and 10^
The redshift range z=4-6 marks a transition phase between primordial and mature galaxy formation in which galaxies considerably increase their stellar mass, metallicity, and dust content. The study of galaxies in this redshift range is therefore impo
The majority of galaxies with current star-formation rates (SFRs), SFRo >= 10^-3 Msun/yr, in the Local Cosmological Volume where observations should be reliable, have the property that their observed SFRo is larger than their average star formation r