ﻻ يوجد ملخص باللغة العربية
Rare regions with weak disorder (Griffiths regions) have the potential to spoil localization. We describe a non-perturbative construction of local integrals of motion (LIOMs) for a weakly interacting spin chain in one dimension, under a physically reasonable assumption on the statistics of eigenvalues. We discuss ideas about the situation in higher dimensions, where one can no longer ensure that interactions involving the Griffiths regions are much smaller than the typical energy-level spacing for such regions. We argue that ergodicity is restored in dimension d > 1, although equilibration should be extremely slow, similar to the dynamics of glasses.
For a one-dimensional spin chain with random local interactions, we prove that many-body localization follows from a physically reasonable assumption that limits the amount of level attraction in the system. The construction uses a sequence of local
We consider a weakly interacting quantum spin chain with random local interactions. We prove that many-body localization follows from a physically reasonable assumption that limits the extent of level attraction in the statistics of eigenvalues. In a
We show that the magnetization of a single `qubit spin weakly coupled to an otherwise isolated disordered spin chain exhibits periodic revivals in the localized regime, and retains an imprint of its initial magnetization at infinite time. We demonstr
Many-body localization (MBL) describes a quantum phase where an isolated interacting system subject to sufficient disorder displays non-ergodic behavior, evading thermal equilibrium that occurs under its own dynamics. Previously, the thermalization-M
Recent numerical and experimental works have revealed a disorder-free many-body localization (MBL) in an interacting system subjecting to a linear potential, known as the Stark MBL. The conventional MBL, induced by disorder, has been widely studied b