ترغب بنشر مسار تعليمي؟ اضغط هنا

A multiscale approach to liquid crystal nematics via statistical field theory

220   0   0.0 ( 0 )
 نشر من قبل Bing-Sui Lu
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Bing-Sui Lu




اسأل ChatGPT حول البحث

We propose an approach to a multiscale problem in the theory of thermotropic uniaxial nematics based on the method of statistical field theory. This approach enables us to relate the coefficients $A$, $B$, $C$, $L_1$ and $L_2$ of the Landau-de Gennes free energy for the isotropic-nematic phase transition to the parameters of a molecular model of uniaxial nematics, which we take to be a lattice gas model of nematogenic molecules interacting via a short-ranged potential. We obtain general constraints on the temperature and volume fraction of nematogens for the Landau-de Gennes theory to be stable against molecular orientation fluctuations at quartic order. In particular, for the case of a fully occupied lattice, we compute the values of the isotropic-nematic transition temperature and the order parameter discontinuity predicted by (i) a continuum approximation of the nearest-neighbor Lebwohl-Lasher model and (ii) a Lebwohl-Lasher-type model with a nematogenic interaction of finite range. We find that the predictions of (i) are in reasonably good agreement with known results of MC simulation.



قيم البحث

اقرأ أيضاً

We review the field theory approach to percolation processes. Specifically, we focus on the so-called simple and general epidemic processes that display continuous non-equilibrium active to absorbing state phase transitions whose asymptotic features are governed respectively by the directed (DP) and dynamic isotropic percolation (dIP) universality classes. We discuss the construction of a field theory representation for these Markovian stochastic processes based on fundamental phenomenological considerations, as well as from a specific microscopic reaction-diffusion model realization. Subsequently we explain how dynamic renormalization group (RG) methods can be applied to obtain the universal properties near the critical point in an expansion about the upper critical dimensions d_c = 4 (DP) and 6 (dIP). We provide a detailed overview of results for critical exponents, scaling functions, crossover phenomena, finite-size scaling, and also briefly comment on the influence of long-range spreading, the presence of a boundary, multispecies generalizations, coupling of the order parameter to other conserved modes, and quenched disorder.
Mapping the Internet generally consists in sampling the network from a limited set of sources by using traceroute-like probes. This methodology, akin to the merging of different spanning trees to a set of destinations, has been argued to introduce un controlled sampling biases that might produce statistical properties of the sampled graph which sharply differ from the original ones. Here we explore these biases and provide a statistical analysis of their origin. We derive a mean-field analytical approximation for the probability of edge and vertex detection that exploits the role of the number of sources and targets and allows us to relate the global topological properties of the underlying network with the statistical accuracy of the sampled graph. In particular we find that the edge and vertex detection probability is depending on the betweenness centrality of each element. This allows us to show that shortest path routed sampling provides a better characterization of underlying graphs with scale-free topology. We complement the analytical discussion with a throughout numerical investigation of simulated mapping strategies in different network models. We show that sampled graphs provide a fair qualitative characterization of the statistical properties of the original networks in a fair range of different strategies and exploration parameters. The numerical study also allows the identification of intervals of the exploration parameters that optimize the fraction of nodes and edges discovered in the sampled graph. This finding might hint the steps toward more efficient mapping strategies.
Using the integral transformation, the field-theoretical Hamiltonian of the statistical field theory of fluids is obtained, along with the microscopic expressions for the coefficients of the Hamiltonian. Applying this approach to the liquid-vapor int erface, we derive an explicit analytical expression for the surface tension in terms of temperature, density and parameters of inter-molecular potential. We also demonstrate that a clear physical interpretation may be given to the formal statistical field arising in the integral transformation - it may be associated with the one-body local microscopic potential. The results of the theory, lacking any ad-hoc or fitting parameters are in a good agreement with available simulation data.
Recently Mazenko and Das and Mazenko introduced a non-equilibrium field theoretical approach to describe the statistical properties of a classical particle ensemble starting from the microscopic equations of motion of each individual particle. We use this theory to investigate the transition from those microscopic degrees of freedom to the evolution equations of the macroscopic observables of the ensemble. For the free theory, we recover the continuity and Jeans equations of a collisionless gas. For a theory containing two-particle interactions in a canonical perturbation series, we find the macroscopic evolution equations to be described by the Born-Bogoliubov-Green-Kirkwood-Yvon hierarchy (BBGKY hierarchy) with a truncation criterion depending on the order in perturbation theory. This establishes a direct link between the classical and the field-theoretical approaches to kinetic theory that might serve as a starting point to investigate kinetic theory beyond the classical limits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا