ﻻ يوجد ملخص باللغة العربية
Any simulation of the r-process is affected by uncertainties in our present knowledge of nuclear physics quantities and astrophysical conditions. It is common to quantify the impact of these uncertainties through a global sensitivity metric, which is then used to identify specific nuclides that would be most worthwhile to measure experimentally. Using descriptive statistics, we assess a set of metrics used in previous sensitivity studies, as well as a new logarithmic measure. For certain neutron-rich nuclides lying near the r-process path for the typical hot-wind scenario, we find opposing conclusions on their relative sensitivity implied by different metrics, although they all generally agree which ones are the most sensitive nuclei. The underlying reason is that sensitivity metrics which simply sum over variations in the r-process distribution depend on the scaling used in the baseline, which often varies between simulations. We show that normalization of the abundances causes changes in the reported sensitivity factors and recommend reporting a minimized F statistic in addition to a scale estimation for rough calibration to be used when comparing tables of sensitivity factors from different studies.
The rapid neutron capture process (r-process) is thought to be responsible for the creation of more than half of all elements beyond iron. The scientific challenges to understanding the origin of the heavy elements beyond iron lie in both the uncerta
We have performed r-process calculations for matter ejected dynamically in neutron star mergers based on a complete set of trajectories from a three-dimensional relativistic smoothed particle hydrodynamic simulation. Our calculations consider an exte
We study the impact of astrophysically relevant nuclear isomers (astromers) in the context of the rapid neutron capture process (r-process) nucleosynthesis. We compute thermally mediated transition rates between long-lived isomers and the correspondi
We report on the creation and application of a novel decay network that uses the latest data from experiment and evaluation. We use the network to simulate the late-time phase of the rapid neutron capture (r) process. In this epoch, the bulk of nucle
Of the variations in the elemental abundance patterns of stars enhanced with $r$-process elements, the variation in the relative actinide-to-lanthanide ratio is among the most significant. We investigate the source of these actinide differences in or