ﻻ يوجد ملخص باللغة العربية
Online graph problems are considered in models where the irrevocability requirement is relaxed. Motivated by practical examples where, for example, there is a cost associated with building a facility and no extra cost associated with doing it later, we consider the Late Accept model, where a request can be accepted at a later point, but any acceptance is irrevocable. Similarly, we also consider a Late Reject model, where an accepted request can later be rejected, but any rejection is irrevocable (this is sometimes called preemption). Finally, we consider the Late Accept/Reject model, where late accepts and rejects are both allowed, but any late reject is irrevocable. For Independent Set, the Late Accept/Reject model is necessary to obtain a constant competitive ratio, but for Vertex Cover the Late Accept model is sufficient and for Minimum Spanning Forest the Late Reject model is sufficient. The Matching problem has a competitive ratio of 2, but in the Late Accept/Reject model, its competitive ratio is 3/2.
The general adwords problem has remained largely unresolved. We define a subcase called {em $k$-TYPICAL}, $k in Zplus$, as follows: the total budget of all the bidders is sufficient to buy $k$ bids for each bidder. This seems a reasonable assumption
We study emph{parallel} online algorithms: For some fixed integer $k$, a collective of $k$ parallel processes that perform online decisions on the same sequence of events forms a $k$-emph{copy algorithm}. For any given time and input sequence, th
Online algorithms make decisions based on past inputs. In general, the decision may depend on the entire history of inputs. If many computers run the same online algorithm with the same input stream but are started at different times, they do not nec
We introduce a new model of computation: the online LOCAL model (OLOCAL). In this model, the adversary reveals the nodes of the input graph one by one, in the same way as in classical online algorithms, but for each new node the algorithm can also in
In this paper, we initiate the study of the weighted paging problem with predictions. This continues the recent line of work in online algorithms with predictions, particularly that of Lykouris and Vassilvitski (ICML 2018) and Rohatgi (SODA 2020) on