ﻻ يوجد ملخص باللغة العربية
Blind deblurring consists a long studied task, however the outcomes of generic methods are not effective in real world blurred images. Domain-specific methods for deblurring targeted object categories, e.g. text or faces, frequently outperform their generic counterparts, hence they are attracting an increasing amount of attention. In this work, we develop such a domain-specific method to tackle deblurring of human faces, henceforth referred to as face deblurring. Studying faces is of tremendous significance in computer vision, however face deblurring has yet to demonstrate some convincing results. This can be partly attributed to the combination of i) poor texture and ii) highly structure shape that yield the contour/gradient priors (that are typically used) sub-optimal. In our work instead of making assumptions over the prior, we adopt a learning approach by inserting weak supervision that exploits the well-documented structure of the face. Namely, we utilise a deep network to perform the deblurring and employ a face alignment technique to pre-process each face. We additionally surpass the requirement of the deep network for thousands training samples, by introducing an efficient framework that allows the generation of a large dataset. We utilised this framework to create 2MF2, a dataset of over two million frames. We conducted experiments with real world blurred facial images and report that our method returns a result close to the sharp natural latent image.
In this paper, we present an effective and efficient face deblurring algorithm by exploiting semantic cues via deep convolutional neural networks (CNNs). As face images are highly structured and share several key semantic components (e.g., eyes and m
In this paper, we propose an effective and efficient face deblurring algorithm by exploiting semantic cues via deep convolutional neural networks. As the human faces are highly structured and share unified facial components (e.g., eyes and mouths), s
Facial action unit recognition has many applications from market research to psychotherapy and from image captioning to entertainment. Despite its recent progress, deployment of these models has been impeded due to their limited generalization to uns
State-of-the-art deep face recognition methods are mostly trained with a softmax-based multi-class classification framework. Despite being popular and effective, these methods still have a few shortcomings that limit empirical performance. In this pa
Face occlusions, covering either the majority or discriminative parts of the face, can break facial perception and produce a drastic loss of information. Biometric systems such as recent deep face recognition models are not immune to obstructions or