We calculate explicitly the one-loop effective potential in different Lorentz-breaking field theory models. First, we consider a Yukawa-like theory and, then, some examples of Lorentz-violating extensions of scalar QED. We observed, for the extended QED models, that the resulting effective potential converges to the known result in the limit in which Lorentz-symmetry is restored. Besides, the one-loop corrections to the effective potential in all the cases we studied depend on the background tensors responsible for the Lorentz symmetry violation. This have consequences in physical quantities like, for example, in the induced mass due to Coleman-Weinberg mechanism.