Breakdown of Polarons in Conducting Polymers at Device Field Strengths


الملخص بالإنكليزية

Conducting polymers have become standard engineering materials, used in manyelectronic devices. Despite this, there is a lack of understanding of the microscopicorigin of the conducting properties, especially at realistic device field strengths. Wepresent simulations of doped poly(p-phenylene) (PPP) using a Su-Schrieffer-Heeger(SSH) tight-binding model, with the electric field included in the Hamiltonian througha time-dependent vector potential via Peierls substitution of the phase factor. We findthat polarons typically break down within less than a picosecond after the field hasbeen switched on, already for electric fields as low as around 1.6 mV/{AA}. This is a fieldstrength common in many flexible organic electronic devices. Our results challenge therelevance of the polaron as charge carrier in conducting polymers for a wide range ofapplications.

تحميل البحث