ﻻ يوجد ملخص باللغة العربية
We introduce a combinatorial variant of the cost sharing problem: several services can be provided to each player and each player values every combination of services differently. A publicly known cost function specifies the cost of providing every possible combination of services. A combinatorial cost sharing mechanism is a protocol that decides which services each player gets and at what price. We look for dominant strategy mechanisms that are (economically) efficient and cover the cost, ideally without overcharging (i.e., budget balanced). Note that unlike the standard cost sharing setting, combinatorial cost sharing is a multi-parameter domain. This makes designing dominant strategy mechanisms with good guarantees a challenging task. We present the Potential Mechanism -- a combination of the VCG mechanism and a well-known tool from the theory of cooperative games: Hart and Mas-Colells potential function. The potential mechanism is a dominant strategy mechanism that always covers the incurred cost. When the cost function is subadditive the same mechanism is also approximately efficient. Our main technical contribution shows that when the cost function is submodular the potential mechanism is approximately budget balanced in three settings: supermodular valuations, symmetric cost function and general symmetric valuations, and two players with general valuations.
We make three different types of contributions to cost-sharing: First, we identify several new classes of combinatorial cost functions that admit incentive-compatible mechanisms achieving both a constant-factor approximation of budget-balance and a p
Motivated by the emergence of popular service-based two-sided markets where sellers can serve multiple buyers at the same time, we formulate and study the {em two-sided cost sharing} problem. In two-sided cost sharing, sellers incur different costs f
We consider the use of cost sharing in the Aspnes model of network inoculation, showing that this can improve the cost of the optimal equilibrium by a factor of $O(sqrt{n})$ in a network of $n$ nodes.
The market economy deals with many interacting agents such as buyers and sellers who are autonomous intelligent agents pursuing their own interests. One such multi-agent system (MAS) that plays an important role in auctions is the combinatorial aucti
We study a fair resource sharing problem, where a set of resources are to be shared among a set of agents. Each agent demands one resource and each resource can serve a limited number of agents. An agent cares about what resource they get as well as