ترغب بنشر مسار تعليمي؟ اضغط هنا

Lattice Gluon Propagator and One-Gluon-Exchange Potential

98   0   0.0 ( 0 )
 نشر من قبل Tereza Mendes
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the interquark potential in the one-gluon-exchange (OGE) approximation, using a fully nonperturbative gluon propagator from large-volume lattice simulations. The resulting VLGP potential is non-confining, showing that the OGE approximation is not sufficient to describe the infrared sector of QCD. Nevertheless, it represents an improvement over the perturbative (Coulomb-like) potential, since it allows the description of a few low-lying bound states of charmonium and bottomonium. In order to achieve a better description of these spectra, we add to VLGP a linearly growing term. The obtained results are comparable to the corresponding ones in the Cornell-potential case. As a byproduct of our study, we estimate the interquark distance for the considered charmonium and bottomonium states.



قيم البحث

اقرأ أيضاً

We consider the potential-model approach for obtaining the spectrum of charmonium and bottomonium, replacing the usual gluon propagator by one obtained from lattice simulations. The resulting spectra are compared to the corresponding ones in the Corn ell-potential case. We also estimate the interquark distance in both cases.
We investigate the propagators of 4D SU(2) gauge theory in Landau gauge by Monte Carlo simulations. To be able to compare with perturbative calculations we use large $beta$ values. There the breaking of the Z(2) symmetry causes large effects for all four lattice directions and doing the analysis in the appropriate state gets important. We find that the gluon propagator in the weak-coupling limit is strongly affected by zero-momentum modes.
We calculate loop contributions up to four loops to the Landau gauge gluon propagator in numerical stochastic perturbation theory. For different lattice volumes we carefully extrapolate the Euler time step to zero for the Langevin dynamics derived fr om the Wilson action. The one-loop result for the gluon propagator is compared to the infinite volume limit of standard lattice perturbation theory.
141 - P. Bicudo , D. Binosi , N. Cardoso 2015
We study the SU(3) gluon propagator in renormalizable $R_xi$ gauges implemented on a symmetric lattice with a total volume of (3.25 fm)$^4$ for values of the guage fixing parameter up to $xi=0.5$. As expected, the longitudinal gluon dressing function stays constant at its tree-level value $xi$. Similar to the Landau gauge, the transverse $R_xi$ gauge gluon propagator saturates at a non-vanishing value in the deep infrared for all values of $xi$ studied. We compare with very recent continuum studies and perform a simple analysis of the found saturation with a dynamically generated effective gluon mass.
We present explicit numerical evidence of reflection-positivity violation for the lattice Landau gluon propagator in three-dimensional pure SU(2) gauge theory. We use data obtained at very large lattice volumes (V = 80^3, 140^3) and for three differe nt lattice couplings in the scaling region (beta = 4.2, 5.0, 6.0). In particular, we observe a clear oscillatory pattern in the real-space propagator C(t). We also verify that the (real-space) data show good scaling in the range t in [0,3] fm and can be fitted using a Gribov-like form. The violation of positivity is in contradiction with a stable-particle interpretation of the associated field theory and may be viewed as a manifestation of confinement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا