ﻻ يوجد ملخص باللغة العربية
We consider the interquark potential in the one-gluon-exchange (OGE) approximation, using a fully nonperturbative gluon propagator from large-volume lattice simulations. The resulting VLGP potential is non-confining, showing that the OGE approximation is not sufficient to describe the infrared sector of QCD. Nevertheless, it represents an improvement over the perturbative (Coulomb-like) potential, since it allows the description of a few low-lying bound states of charmonium and bottomonium. In order to achieve a better description of these spectra, we add to VLGP a linearly growing term. The obtained results are comparable to the corresponding ones in the Cornell-potential case. As a byproduct of our study, we estimate the interquark distance for the considered charmonium and bottomonium states.
We consider the potential-model approach for obtaining the spectrum of charmonium and bottomonium, replacing the usual gluon propagator by one obtained from lattice simulations. The resulting spectra are compared to the corresponding ones in the Corn
We investigate the propagators of 4D SU(2) gauge theory in Landau gauge by Monte Carlo simulations. To be able to compare with perturbative calculations we use large $beta$ values. There the breaking of the Z(2) symmetry causes large effects for all
We calculate loop contributions up to four loops to the Landau gauge gluon propagator in numerical stochastic perturbation theory. For different lattice volumes we carefully extrapolate the Euler time step to zero for the Langevin dynamics derived fr
We study the SU(3) gluon propagator in renormalizable $R_xi$ gauges implemented on a symmetric lattice with a total volume of (3.25 fm)$^4$ for values of the guage fixing parameter up to $xi=0.5$. As expected, the longitudinal gluon dressing function
We present explicit numerical evidence of reflection-positivity violation for the lattice Landau gluon propagator in three-dimensional pure SU(2) gauge theory. We use data obtained at very large lattice volumes (V = 80^3, 140^3) and for three differe