ﻻ يوجد ملخص باللغة العربية
The nature of ultraluminous X-ray sources (ULXs) -- off-nuclear extra-galactic sources with luminosity, assumed isotropic, $gtrsim 10^{39}$ erg s$^{-1}$ -- is still debated. One possibility is that ULXs are stellar black holes accreting beyond the Eddington limit. This view has been recently reinforced by the discovery of ultrafast outflows at $sim 0.1$-$0.2c$ in the high resolution spectra of a handful of ULXs, as predicted by models of supercritical accretion discs. Under the assumption that ULXs are powered by super-Eddington accretion onto black holes, we use the properties of the observed outflows to self-consistently constrain their masses and accretion rates. We find masses $lesssim 100$ M$_{odot}$ and typical accretion rates $sim 10^{-5}$ M$_{odot}$ yr$^{-1}$, i.e. $approx 10$ times larger than the Eddington limit calculated with a radiative efficiency of 0.1. However, the emitted luminosity is only $approx 10%$ beyond the Eddington luminosity, because most of the energy released in the inner part of the accretion disc is used to accelerate the wind, which implies radiative efficiency $sim 0.01$. Our results are consistent with a formation model where ULXs are black hole remnants of massive stars evolved in low-metallicity environments.
We review the likely population, observational properties, and broad implications of stellar-mass black holes and ultraluminous x-ray sources. We focus on the clear empirical rules connecting accretion and outflow that have been established for stell
Luminous accreting stellar mass and supermassive black holes produce power-law continuum X-ray emission from a compact central corona. Reverberation time lags occur due to light travel time-delays between changes in the direct coronal emission and co
We present the results from an X-ray and optical study of a new sample of eight extreme luminosity ultraluminous X-ray source (ULX) candidates, which were selected as the brightest ULXs (with L_X > 5x10^40 erg/s) located within 100 Mpc identified in
To test the idea that ultraluminous X-ray sources (ULXs) in external galaxies represent a class of accreting intermediate-mass black holes (IMBHs), we have undertaken a program to identify ULXs and a lower luminosity X-ray comparison sample with the
We present a mid-infrared (IR) sample study of nearby ultraluminous X-ray sources (ULXs) using multi-epoch observations with the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. Spitzer/IRAC observations taken after 2014 were obtained as