ﻻ يوجد ملخص باللغة العربية
Missing data are a common problem for both the construction and implementation of a prediction algorithm. Pattern mixture kernel submodels (PMKS) - a series of submodels for every missing data pattern that are fit using only data from that pattern - are a computationally efficient remedy for both stages. Here we show that PMKS yield the most predictive algorithm among all standard missing data strategies. Specifically, we show that the expected loss of a forecasting algorithm is minimized when each pattern-specific loss is minimized. Simulations and a re-analysis of the SUPPORT study confirms that PMKS generally outperforms zero-imputation, mean-imputation, complete-case analysis, complete-case submodels, and even multiple imputation (MI). The degree of improvement is highly dependent on the missingness mechanism and the effect size of missing predictors. When the data are Missing at Random (MAR) MI can yield comparable forecasting performance but generally requires a larger computational cost. We see that predictions from the PMKS are equivalent to the limiting predictions for a MI procedure that uses a mean model dependent on missingness indicators (the MIMI model). Consequently, the MIMI model can be used to assess the MAR assumption in practice. The focus of this paper is on out-of-sample prediction behavior, implications for model inference are only briefly explored.
Classical semiparametric inference with missing outcome data is not robust to contamination of the observed data and a single observation can have arbitrarily large influence on estimation of a parameter of interest. This sensitivity is exacerbated w
In the field of materials science and engineering, statistical analysis and machine learning techniques have recently been used to predict multiple material properties from an experimental design. These material properties correspond to response vari
We develop a representation of Gaussian distributed sparsely sampled longitudinal data whereby the data for each subject are mapped to a multivariate Gaussian distribution; this map is entirely data-driven. The proposed method utilizes functional pri
In electronic health records (EHRs), latent subgroups of patients may exhibit distinctive patterning in their longitudinal health trajectories. For such data, growth mixture models (GMMs) enable classifying patients into different latent classes base
Missing data is a common problem which has consistently plagued statisticians and applied analytical researchers. While replacement methods like mean-based or hot deck imputation have been well researched, emerging imputation techniques enabled throu