ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-assembly of InAs nanostructures on the sidewalls of GaAs nanowires directed by a Bi surfactant

97   0   0.0 ( 0 )
 نشر من قبل Ryan B. Lewis
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Surface energies play a dominant role in the self-assembly of three dimensional (3D) nanostructures. In this letter, we show that using surfactants to modify surface energies can provide a means to externally control nanostructure self-assembly, enabling the synthesis of novel hierarchical nanostructures. We explore Bi as a surfactant in the growth of InAs on the {1-10} sidewall facets of GaAs nanowires. The presence of surface Bi induces the formation of InAs 3D islands by a process resembling the Stranski-Krastanov mechanism, which does not occur in the absence of Bi on these surfaces. The InAs 3D islands nucleate at the corners of the {1-10} facets above a critical shell thickness and then elongate along <110> directions in the plane of the nanowire sidewalls. Exploiting this growth mechanism, we realize a series of novel hierarchical nanostructures, ranging from InAs quantum dots on single {1-10} nanowire facets to zig-zag shaped nanorings completely encircling nanowire cores. Photoluminescence spectroscopy and cathodoluminescence spectral line scans reveal that small surfactant-induced InAs 3D islands behave as optically active quantum dots. This work illustrates how surfactants can provide an unprecedented level of external control over nanostructure self-assembly.



قيم البحث

اقرأ أيضاً

We report observation of field emission from self-catalyzed GaAs nanowires grown on Si (111). The measurements are realized inside a scanning electron microscope chamber with nano-controlled tungsten tip functioning as anode. Experimental data are an alyzed in the framework of Fowler-Nordheim theory. We demonstrate stable current up to 10$^{-7}$ A emitted from the tip of single nanowire, with field enhancement factor $beta$ up to 112 at anode-cathode distance d=350 nm. A linear dependence of $beta$ on the anode-cathode distance is experimentally found. We also show that the presence of a Ga catalyst droplet suppresses the emission of current from the nanowire tip. This allows detection of field emission from the nanowire sidewalls, which occurs with reduced field enhancement factor and stability. This study further extends the GaAs technology to vacuum electronics applications.
In strained heteroepitaxy, two-dimensional (2D) layers can exhibit a critical thickness at which three-dimensional (3D) islands self-assemble, relieving misfit strain at the cost of an increased surface area. Here we show that such a morphological ph ase transition can be induced on-demand using surfactants. We explore Bi as a surfactant in the growth of InAs on GaAs(110), and find that the presence of surface Bi induces Stranski-Krastanov growth of 3D islands, while growth without Bi always favors 2D layer formation. Exposing a static two monolayer thick InAs layer to Bi rapidly transforms the layer into 3D islands. Density functional theory calculations reveal that Bi reduces the energetic cost of 3D island formation by modifying surface energies. These 3D nanostructures behave as optically active quantum dots. This work illustrates how surfactants can enable quantum dot self-assembly where it otherwise would not occur.
Embedding quantum dots (QDs) on nanowire (NW) sidewalls allows the integration of multi-layers of QDs into the active region of radial p-i-n junctions to greatly enhance light emission/absorption. However, the surface curvature makes the growth much more challenging compared with growths on thin-films, particularly on NWs with small diameters ({O} <100 nm). Moreover, the {110} sidewall facets of self-catalyzed NWs favor two-dimensional growth (2D), with the realization of three-dimensional (3D) Stranski-Krastanow growth becoming extremely challenging. Here, we demonstrate thermally-driven formation of Ge dots on the {110} sidewalls facets of thin self-catalyzed NWs without using any surfactant or surface treatment. The 2D-3D transition of the pseudomorphic Ge layer grown on GaAs NWs is driven by energy minimization under high-temperature annealing. This method opens a new avenue to integrate QDs on NWs without any restriction on NW diameter or elastic strain, which can allow the formation of QDs in a wider range of materials systems where the growth of islands by traditional mechanisms is not possible, with benefits for novel NWQD-based optoelectronic devices.
In this work we show that the incidence angle of group-III elements fluxes plays a significant role on the diffusion-controlled growth of III-V nanowires (NWs) by molecular beam epitaxy (MBE). We present a thorough experimental study on the self-assi sted growth of GaAs NWs by using a MBE reactor equipped with two Ga cells located at different incidence angles with respect to the surface normal of the substrate, so as to ascertain the impact of such a parameter on the NW growth kinetics. The as-obtained results show a dramatic influence of the Ga flux incidence angle on the NW length and diameter, as well as on the shape and size of the Ga droplets acting as catalysts. In order to interpret the results we developed a semi-empirical analytic model inspired by those already developed for MBE-grown Au-catalyzed GaAs NWs. Numerical simulations performed with the model allow to reproduce thoroughly the experimental results (in terms of NW length and diameter and of droplet size and wetting angle), putting in evidence that under formally the same experimental conditions the incidence angle of the Ga flux is a key parameter which can drastically affect the growth kinetics of the NWs grown by MBE.
We report on the heterogeneous nucleation of catalyst-free InAs nanowires on Si (111) substrates by chemical beam epitaxy. We show that nanowire nucleation is enhanced by sputtering the silicon substrate with energetic particles. We argue that partic le bombardment introduces lattice defects on the silicon surface that serve as preferential nucleation sites. The formation of these nucleation sites can be controlled by the sputtering parameters, allowing the control of nanowire density in a wide range. Nanowire nucleation is accompanied by unwanted parasitic islands, but by careful choice of annealing and growth temperature allows to strongly reduce the relative density of these islands and to realize samples with high nanowire yield.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا