ﻻ يوجد ملخص باللغة العربية
The definition of accessible coherence is proposed. Through local measurement on the other subsystem and one way classical communication, a subsystem can access more coherence than the coherence of its density matrix. Based on the local accessible coherence, the part that can not be locally accessed is also studied, which we call it remaining coherence. We study how the bipartite coherence is distributed by partition for both l1 norm coherence and relative entropy coherence, and the expressions for local accessible coherence and remaining coherence are derived. we also study some examples to illustrate the distribution.
Quantum coherence, like entanglement, is a fundamental resource in quantum information. In recent years, remarkable progress has been made in formulating resource theory of coherence from a broader perspective. The notions of block-coherence and POVM
One of the main problems in any quantum resource theory is the characterization of the
The interference observed for a quanton, traversing more than one path, is believed to characterize its wave nature. Conventionally, the sharpness of interference has been quantified by its visibility or contrast, as defined in optics. Based on this
Quantifying quantum coherence is a key task in the resource theory of coherence. Here we establish a good coherence monotone in terms of a state conversion process, which automatically endows the coherence monotone with an operational meaning. We sho
We have established that the most general form of Hamiltonian that preserves fermionic coherent states stable in time, is that of the nonstationary free fermionic oscillator. This is to be compared with the earlier result of boson coherence Hamiltoni