ﻻ يوجد ملخص باللغة العربية
As the calorimetric method of neutrino-energy reconstruction is generally considered to be largely insensitive to nuclear effects, its application seems to be an effective way for reducing systematic uncertainties in oscillation experiments. To verify the validity of this opinion, we quantitatively study the sensitivity of the calorimetric energy reconstruction to the effect of final-state interactions in an ideal detector and in a realistic scenario. We find that when particles escaping detection carry away a non-negligible fraction of neutrino energy, the calorimetric reconstruction method becomes sensitive to nuclear effects which, in turn, affects the outcome of the oscillation analysis. These findings suggest that the best strategy for reduction of systematic uncertainties in future neutrino-oscillation studies---such as the Deep Underground Neutrino Experiment---is to increase their sensitivity to particles of low energy. The ambitious precision goals appear also to require an extensive development of theoretical models capable of providing an accurate predictions for exclusive cross sections of well-controlled uncertainties.
To be able to achieve their physics goals, future neutrino-oscillation experiments will need to reconstruct the neutrino energy with very high accuracy. In this work, we analyze how the energy reconstruction may be affected by realistic detection cap
We propose a new technique which enables an event-by-event selection of neutrino-hydrogen interactions in multi-nuclear targets and thereby allows application of hydrogen as targets in experiments with neutrino beams without involving cryogenics or h
The energy spectrum of a neutrino beam in the few-GeV region is free of uncertainties from nuclear effects when reconstructed via neutrino-hydrogen interactions. On a multinuclear (hydrogen containing) target such interactions can be extracted using
We compute the nuclear corrections to the proton-deuteron Drell-Yan cross section for inclusive dilepton production, which, when combined with the proton-proton cross section, is used to determine the flavor asymmetry in the proton sea, dbar - ubar.
We study the physics reach of the long-baseline oscillation analysis of the DUNE experiment when realistic simulations are used to estimate its neutrino energy reconstruction capabilities. Our studies indicate that significant improvements in energy