ﻻ يوجد ملخص باللغة العربية
The share of wind energy in total installed power capacity has grown rapidly in recent years around the world. Producing accurate and reliable forecasts of wind power production, together with a quantification of the uncertainty, is essential to optimally integrate wind energy into power systems. We build spatio-temporal models for wind power generation and obtain full probabilistic forecasts from 15 minutes to 5 hours ahead. Detailed analysis of the forecast performances on the individual wind farms and aggregated wind power are provided. We show that it is possible to improve the results of forecasting aggregated wind power by utilizing spatio-temporal correlations among individual wind farms. Furthermore, spatio-temporal models have the advantage of being able to produce spatially out-of-sample forecasts. We evaluate the predictions on a data set from wind farms in western Denmark and compare the spatio-temporal model with an autoregressive model containing a common autoregressive parameter for all wind farms, identifying the specific cases when it is important to have a spatio-temporal model instead of a temporal one. This case study demonstrates that it is possible to obtain fast and accurate forecasts of wind power generation at wind farms where data is available, but also at a larger portfolio including wind farms at new locations. The results and the methodologies are relevant for wind power forecasts across the globe as well as for spatial-temporal modelling in general.
Fast and accurate hourly forecasts of wind speed and power are crucial in quantifying and planning the energy budget in the electric grid. Modeling wind at a high resolution brings forth considerable challenges given its turbulent and highly nonlinea
Accurate short-term wind speed forecasting is needed for the rapid development and efficient operation of wind energy resources. This is, however, a very challenging problem. Although on the large scale, the wind speed is related to atmospheric press
In the wind energy industry, it is of great importance to develop models that accurately forecast the power output of a wind turbine, as such predictions are used for wind farm location assessment or power pricing and bidding, monitoring, and prevent
This paper proposes a spatio-temporal model for wind speed prediction which can be run at different resolutions. The model assumes that the wind prediction of a cluster is correlated to its upstream influences in recent history, and the correlation b
Short-term load forecasting (STLF) is essential for the reliable and economic operation of power systems. Though many STLF methods were proposed over the past decades, most of them focused on loads at high aggregation levels only. Thus, low-aggregati