ﻻ يوجد ملخص باللغة العربية
We perform ultrasound velocity measurements on a single crystal of nearly-metallic spinel Co$_{1.21}$V$_{1.79}$O$_4$ which exhibits a ferrimagnetic phase transition at $T_C sim$ 165 K. The experiments reveal a variety of elastic anomalies in not only the paramagnetic phase above $T_C$ but also the ferrimagnetic phase below $T_C$, which should be driven by the nearly-itinerant character of the orbitally-degenerate V 3$d$ electrons. In the paramagnetic phase above $T_C$, the elastic moduli exhibit elastic-mode-dependent unusual temperature variations, suggesting the existence of a dynamic spin-cluster state. Furthermore, above $T_C$, the sensitive magnetic-field response of the elastic moduli suggests that, with the negative magnetoresistance, the magnetic-field-enhanced nearly-itinerant character of the V 3$d$ electrons emerges from the spin-cluster state. This should be triggered by the inter-V-site interactions acting on the orbitally-degenerate 3$d$ electrons. In the ferrimagnetic phase below $T_C$, the elastic moduli exhibit distinct anomalies at $T_1sim$ 95 K and $T_2sim$ 50 K, with a sign change of the magnetoresistance at $T_1$ (positive below $T_1$) and an enhancement of the positive magnetoresistance below $T_2$, respectively. These observations below $T_C$ suggest the successive occurrence of an orbital glassy order at $T_1$ and a structural phase transition at $T_2$, where the rather localized character of the V 3$d$ electrons evolves below $T_1$ and is further enhanced below $T_2$.
We have investigated the orbital states of the orbital-glassy (short-range orbital ordered) spinel vanadate Co$_{1.21}$V$_{1.79}$O$_{4}$ using x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD), and subsequent configuration
The crossover from localized- to itinerant-electron behavior is associated with many intriguing phenomena in condensed-matter physics. In this paper, we investigate the crossover from localized to itinerant regimes in the spinel system Mn$_{1-x}$Co$_
The realization of Kitaevs honeycomb magnetic model in real materials has become one of the most pursued topics in condensed matter physics and materials science. If found, it is expected to host exotic quantum phases of matter and offers potential r
The chemical pressure effect on the structural, transport, magnetic and electronic properties (by measuring X-ray photoemission spectroscopy) of ZnV2O4 has been investigated by doping Mn and Co on the Zinc site of ZnV2O4. With Mn doping the V-V dista
We use x-ray spectroscopy at Ir L$_3$/L$_2$ absorption edge to study powder samples of the intercalated honeycomb magnet Ag$_3$LiIr$_2$O$_6$. Based on x-ray absorption and resonant inelastic x-ray scattering measurements, and exact diagonalization ca