ترغب بنشر مسار تعليمي؟ اضغط هنا

BDSAR: a new package on Bregman divergence for Bayesian simultaneous autoregressive models

51   0   0.0 ( 0 )
 نشر من قبل Ricardo Ehlers
 تاريخ النشر 2017
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

BDSAR is an R package which estimates distances between probability distributions and facilitates a dynamic and powerful analysis of diagnostics for Bayesian models from the class of Simultaneous Autoregressive (SAR) spatial models. The package offers a new and fine plot to compare models as well as it works in an intuitive way to allow any analyst to easily build fine plots. These are helpful to promote insights about influential observations in the data.



قيم البحث

اقرأ أيضاً

The problem to maximize the information divergence from an exponential family is generalized to the setting of Bregman divergences and suitably defined Bregman families.
Bregman divergences generalize measures such as the squared Euclidean distance and the KL divergence, and arise throughout many areas of machine learning. In this paper, we focus on the problem of approximating an arbitrary Bregman divergence from su pervision, and we provide a well-principled approach to analyzing such approximations. We develop a formulation and algorithm for learning arbitrary Bregman divergences based on approximating their underlying convex generating function via a piecewise linear function. We provide theoretical approximation bounds using our parameterization and show that the generalization error $O_p(m^{-1/2})$ for metric learning using our framework matches the known generalization error in the strictly less general Mahalanobis metric learning setting. We further demonstrate empirically that our method performs well in comparison to existing metric learning methods, particularly for clustering and ranking problems.
The generalized labeled multi-Bernoulli (GLMB) is a family of tractable models that alleviates the limitations of the Poisson family in dynamic Bayesian inference of point processes. In this paper, we derive closed form expressions for the void proba bility functional and the Cauchy-Schwarz divergence for GLMBs. The proposed analytic void probability functional is a necessary and sufficient statistic that uniquely characterizes a GLMB, while the proposed analytic Cauchy-Schwarz divergence provides a tractable measure of similarity between GLMBs. We demonstrate the use of both results on a partially observed Markov decision process for GLMBs, with Cauchy-Schwarz divergence based reward, and void probability constraint.
This chapter surveys the most standard Monte Carlo methods available for simulating from a posterior distribution associated with a mixture and conducts some experiments about the robustness of the Gibbs sampler in high dimensional Gaussian settings. This is a chapter prepared for the forthcoming Handbook of Mixture Analysis.
207 - Tore Selland Kleppe 2018
Dynamically rescaled Hamiltonian Monte Carlo (DRHMC) is introduced as a computationally fast and easily implemented method for performing full Bayesian analysis in hierarchical statistical models. The method relies on introducing a modified parameter isation so that the re-parameterised target distribution has close to constant scaling properties, and thus is easily sampled using standard (Euclidian metric) Hamiltonian Monte Carlo. Provided that the parameterisations of the conditional distributions specifying the hierarchical model are constant information parameterisations (CIP), the relation between the modified- and original parameterisation is bijective, explicitly computed and admit exploitation of sparsity in the numerical linear algebra involved. CIPs for a large catalogue of statistical models are presented, and from the catalogue, it is clear that many CIPs are currently routinely used in statistical computing. A relation between the proposed methodology and a class of explicitly integrated Riemann manifold Hamiltonian Monte Carlo methods is discussed. The methodology is illustrated on several example models, including a model for inflation rates with multiple levels of non-linearly dependent latent variables.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا