ترغب بنشر مسار تعليمي؟ اضغط هنا

Comments on 2D dilaton gravity system with a hyperbolic dilaton potential

120   0   0.0 ( 0 )
 نشر من قبل Hideki Kyono
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We proceed to study a (1+1)-dimensional dilaton gravity system with a hyperbolic dilaton potential. Introducing a couple of new variables leads to two copies of Liouville equations with two constraint conditions. In particular, in conformal gauge, the constraints can be expressed with Schwarzian derivatives. We revisit the vacuum solutions in light of the new variables and reveal its dipole-like structure. Then we present a time-dependent solution which describes formation of a black hole with a pulse. Finally, the black hole thermodynamics is considered by taking account of conformal matters from two points of view: 1) the Bekenstein-Hawking entropy and 2) the boundary stress tensor. The former result agrees with the latter one with a certain counter-term.



قيم البحث

اقرأ أيضاً

We study the relation between the dilaton action and sigma models for the Goldstone bosons of the spontaneous breaking of the conformal group. We argue that the relation requires that the sigma model is diffeomorphism invariant. The origin of the WZW terms for the dilaton is clarified and it is shown that in this approach the dilaton WZW term is necessarily accompanied by a Weyl invariant term proposed before from holographic considerations.
We show explicitly that the nonminimal coupling between the scalar field and the Ricci scalar in 2D dilaton gravity can be recast in the form of kinetic gravity braiding (KGB). This is as it should be, because KGB is the 2D version of the Horndeski t heory. We also determine all the static solutions with a linearly time-dependent scalar configuration in the shift-symmetric KGB theories in 2D.
We consider gravitational perturbations of 2D dilaton gravity systems and show that these can be recast into $Tbar{T}$-deformations (at least) under certain conditions, where $T$ means the energy-momentum tensor of the matter field coupled to a dilat on gravity. In particular, the class of theories under this condition includes a Jackiw-Teitelboim (JT) theory with a negative cosmological constant including conformal matter fields. This is a generalization of the preceding work on the flat-space JT gravity by S. Dubovsky, V. Gorbenko and M. Mirbabayi [arXiv:1706.06604].
We show that several features of the Jackiw-Teitelboim model are in fact universal properties of two-dimensional Maxwell-dilaton gravity theories with a broad class of asymptotics. These theories satisfy a flow equation with the structure of a dimens ionally reduced TTbar deformation, and exhibit chaotic behavior signaled by a maximal Lyapunov exponent. One consequence of our results is a no-go theorem for smooth flows from an asymptotically AdS2 region to a de Sitter fixed point.
We calculate the shear viscosity of field theories with gravity duals of Gauss-Bonnet gravity with a non-trivial dilaton using AdS/CFT. We find that the dilaton filed has a non-trivial contribution to the ratio of shear viscosity over entropy density and after imposing causal constraint for the boundary field theory, the new lower bound $4/25pi$, obtained from pure Gauss-Bonnet gravity, may have a small violation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا