ترغب بنشر مسار تعليمي؟ اضغط هنا

Effective interactions between inclusions in an active bath

74   0   0.0 ( 0 )
 نشر من قبل Ali Naji
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study effective two- and three-body interactions between non-active colloidal inclusions in an active bath of chiral or non-chiral particles, using Brownian Dynamics simulations within a standard, two-dimensional model of disk-shaped inclusions and active particles. In a non-chiral active bath, we first corroborate previous findings on effective two-body repulsion mediated between the inclusions by elucidating the detailed non-monotonic features of the two-body force profiles, including a primary maximum, and a secondary hump at larger separations that was not previously reported. We then show that these features arise directly from the formation, and sequential overlaps, of circular layers (or rings) of active particles around the inclusions, as the latter are brought to small surface separations. These rings extend to radial distances of a few active-particle radii from the surface of inclusions, giving the hard-core inclusions relatively thick, soft, repulsive shoulders, whose multiple overlaps then enable significant (non-pairwise) three-body forces in both non-chiral and chiral active baths. The resulting three-body forces can even exceed the two-body forces in magnitude and display distinct repulsive and attractive regimes at intermediate to large self-propulsion strengths. In a chiral active bath, we show that, while active particles still tend to accumulate at the immediate vicinity of the inclusions, they exhibit strong depletion from the intervening region between the inclusions, and partial depletion from relatively thick, circular, zones further away from the inclusions. In this case, the effective, predominantly repulsive, interactions between the inclusions turn to active, chirality-induced, depletion-type attractions, acting over an extended range of separations.



قيم البحث

اقرأ أيضاً

Colloidal inclusions suspended in a bath of smaller particles experience an effective bath-mediated attraction at small intersurface separations, which is known as the depletion interaction. In an active bath of nonchiral self-propelled particles, th e effective force changes from attraction to repulsion; an effect that is suppressed, when the active bath particles are chiral. Using Brownian Dynamics simulations, we study the effects of channel confinement and bath chirality on the effective forces and torques that are mediated between two inclusions that may be fixed within the channel or may be allowed to rotate freely as a rigid dimer around its center of mass. We show that the confinement has a strong effect on the effective interactions, depending on the orientation of the dimer relative to the channel walls. The active particle chirality leads to a force imbalance and, hence, a net torque on the inclusion dimer, which we investigate as a function of the bath chirality strength and the channel height.
Using Brownian Dynamics simulations, we study effective interactions mediated between two identical and impermeable disks (inclusions) immersed in a bath of identical, active (self-propelled), Brownian rods in two spatial dimensions, by assuming that the self-propulsion axis of the rods may generally deviate from their longitudinal axis. When the self-propulsion is transverse (perpendicular to the rod axis), the accumulation of active rods around the inclusions is significantly enhanced, causing a more expansive steric layering (ring formation) of the rods around the inclusions, as compared with the reference case of longitudinally self-propelling rods. As a result, the transversally self-propelling rods also mediate a significantly longer ranged effective interaction between the inclusions. The bath-mediated interaction arises due to the overlaps between the active-rod rings formed around the inclusions, as they are brought into small separations. When the self-propulsion axis is tilted relative to the rod axis, we find an asymmetric imbalance of active-rod accumulation around the inclusion dimer. This leads to a noncentral interaction, featuring an anti-parallel pair of transverse force components and, hence, a bath-mediated torque on the dimer.
200 - Mahdi Zarif , Ali Naji 2019
In a system of colloidal inclusions suspended in a thermalized bath of smaller particles, the bath engenders an attractive force between the inclusions, arising mainly from entropic origins, known as the depletion force. In the case of active bath pa rticles, the nature of the bath-mediated force changes dramatically from an attractive to a repulsive one, as the strength of particle activity is increased. We study such bath-mediated effective interactions between colloidal inclusions in a bath of self-propelled Brownian particles, being confined in a narrow planar channel. Confinement is found to have a strong effect on the interaction between colloidal particles, however, this mainly depends on the colloidal orientation inside the channel. Effect of the confinement on the interaction of colloidal disk is controlled by the layering of active particles on the surface boundaries. This can emerge as a competitive factor, involving the tendencies of the channel walls and the colloidal inclusions in accumulating the active particles in their own proximity.
We study steady-state properties of a bath of active Brownian particles (ABPs) in two dimensions in the presence of two fixed, permeable (hollow) disklike inclusions, whose interior and exterior regions can exhibit mismatching motility (self-propulsi on) strengths for the ABPs. We show that such a discontinuous motility field strongly affects spatial distribution of ABPs and thus also the effective interaction mediated between the inclusions through the active bath. Such net interactions arise from soft interfacial repulsions between ABPs that sterically interact with and/or pass through permeable membranes assumed to enclose the inclusions. Both regimes of repulsion and attractive (albeit with different mechanisms) are reported and summarized in overall phase diagrams.
89 - B. Liebchen , H. Lowen 2018
Despite a mounting evidence that the same gradients which active colloids use for swimming, induce important cross-interactions (phoretic interaction), they are still ignored in most many-body descriptions, perhaps to avoid complexity and a zoo of un known parameters. Here we derive a simple model, which reduces phoretic far-field interactions to a pair-interaction whose strength is mainly controlled by one genuine parameter (swimming speed). The model suggests that phoretic interactions are generically important for autophoretic colloids (unless effective screening of the phoretic fields is strong) and should dominate over hydrodynamic interactions for the typical case of half-coating and moderately nonuniform surface mobilities. Unlike standard minimal models, but in accordance with canonical experiments, our model generically predicts dynamic clustering in active colloids at low density. This suggests that dynamic clustering can emerge from the interplay of screened phoretic attractions and active diffusion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا