ﻻ يوجد ملخص باللغة العربية
We have investigated the electrical resistivity, Seebeck coefficient and thermal conductivity of PdTe2 and 4% Cu intercalated PdTe2 compounds. Electrical resistivity for the compounds shows Bloch-Gruneisen type linear temperature (T) dependence for 100 K < T < 480 K, and Fermi liquid behavior (~ T^2) below 50 K. Seebeck coefficient data exhibit strong competition between Normal (N) and Umklapp (U) scattering processes at low T. Though our results indicate the transfer of charge carriers to PdTe2 upon Cu intercalation, it is difficult to discern any change in the Fermi surface of the compound by Nordheim-Gorter plots. The estimated Fermi energies of the compounds are quite comparable to good metals Cu, Ag and Au. The low T, thermal conductivity (k) of the compounds is strongly dominated by the electronic contribution, and exhibits a rare linear T dependence below 10 K. However, high T, k(T) shows usual 1/T dependence, dominated by U scattering process. The electron phonon coupling parameters, estimated from the low T, specific heat data and first principle electronic structure calculations suggest that PdTe2 and Cu0.04PdTe2 are intermediately coupled superconductors.
The electronic and magnetic properties of the new hydride superconductor CaFeAsH, which superconducts up to 47 K when electron-doped with La, and the isovalent alloy system CaFeAsH$_{1-x}$F$_x$ are investigated using density functional based methods.
Resistivity and specific heat measurements were performed in the low carrier unconventional superconductor URu2Si2 on various samples with very different qualities. The superconducting transition temperature (TSC) and the hidden order transition temp
A technique for measuring the electrical resistivity and absolute thermopower is presented for pressures up to 30 GPa, temperatures down to 25 mK and magnetic fields up to 10 T. With the examples of CeCu2Ge2 and CeCu2Si2 we focus on the interplay of
Charge order in cuprate superconductors is a possible source of anomalous electronic properties in the underdoped regime. Intra-unit cell charge ordering tendencies point to electronic nematic order involving oxygen orbitals. In this context we inves
The Coulomb repulsion, impeding electrons motion, has an important impact on the charge dynamics. It mainly causes a reduction of the effective metallic Drude weight (proportional to the so-called optical kinetic energy), encountered in the optical c