ﻻ يوجد ملخص باللغة العربية
In this article, we construct a non-commutative crepant resolution (=NCCR) of a minimal nilpotent orbit closure $overline{B(1)}$ of type A, and study relations between an NCCR and crepant resolutions $Y$ and $Y^+$ of $overline{B(1)}$. More precisely, we show that the NCCR is isomorphic to the path algebra of the double Beilinson quiver with certain relations and we reconstruct the crepant resolutions $Y$ and $Y^+$ of $overline{B(1)}$ as moduli spaces of representations of the quiver. We also study the Kawamata-Namikawas derived equivalence between crepant resolutions $Y$ and $Y^+$ of $overline{B(1)}$ in terms of an NCCR. We also show that the P-twist on the derived category of $Y$ corresponds to a certain operation of the NCCR, which we call multi-mutation, and that a multi-mutation is a composition of Iyama-Wemysss mutations.
Recently, Segal constructed a derived equivalence for an interesting 5-fold flop that was provided by Abuaf. The aim of this article is to add some results for the derived equivalence for Abuafs flop. Concretely, we study the equivalence for Abuafs f
We introduce special classes of non-commutative crepant resolutions (= NCCR) which we call steady and splitting. We show that a singularity has a steady splitting NCCR if and only if it is a quotient singularity by a finite abelian group. We apply our results to toric singularities and dimer models.
Associated to a Mukai flop X ---> X is on the one hand a sequence of equivalences D(X) -> D(X), due to Kawamata and Namikawa, and on the other hand a sequence of autoequivalences of D(X), due to Huybrechts and Thomas. We work out a complete picture o
In this paper, we study splitting (or toric) non-commutative crepant resolutions (= NCCRs) of some toric rings. In particular, we consider Hibi rings, which are toric rings arising from partially ordered sets, and show that Gorenstein Hibi rings with
We say that an exact equivalence between the derived categories of two algebraic varieties is tilting-type if it is constructed by using tilting bundles. The aim of this article is to understand the behavior of tilting-type equivalences for crepant r