An oriented graph $G^sigma$ is a digraph without loops or multiple arcs whose underlying graph is $G$. Let $Sleft(G^sigmaright)$ be the skew-adjacency matrix of $G^sigma$ and $alpha(G)$ be the independence number of $G$. The rank of $S(G^sigma)$ is called the skew-rank of $G^sigma$, denoted by $sr(G^sigma)$. Wong et al. [European J. Combin. 54 (2016) 76-86] studied the relationship between the skew-rank of an oriented graph and the rank of its underlying graph. In this paper, the correlation involving the skew-rank, the independence number, and some other parameters are considered. First we show that $sr(G^sigma)+2alpha(G)geqslant 2|V_G|-2d(G)$, where $|V_G|$ is the order of $G$ and $d(G)$ is the dimension of cycle space of $G$. We also obtain sharp lower bounds for $sr(G^sigma)+alpha(G),, sr(G^sigma)-alpha(G)$, $sr(G^sigma)/alpha(G)$ and characterize all corresponding extremal graphs.