ﻻ يوجد ملخص باللغة العربية
An oriented graph $G^sigma$ is a digraph without loops or multiple arcs whose underlying graph is $G$. Let $Sleft(G^sigmaright)$ be the skew-adjacency matrix of $G^sigma$ and $alpha(G)$ be the independence number of $G$. The rank of $S(G^sigma)$ is called the skew-rank of $G^sigma$, denoted by $sr(G^sigma)$. Wong et al. [European J. Combin. 54 (2016) 76-86] studied the relationship between the skew-rank of an oriented graph and the rank of its underlying graph. In this paper, the correlation involving the skew-rank, the independence number, and some other parameters are considered. First we show that $sr(G^sigma)+2alpha(G)geqslant 2|V_G|-2d(G)$, where $|V_G|$ is the order of $G$ and $d(G)$ is the dimension of cycle space of $G$. We also obtain sharp lower bounds for $sr(G^sigma)+alpha(G),, sr(G^sigma)-alpha(G)$, $sr(G^sigma)/alpha(G)$ and characterize all corresponding extremal graphs.
Given a simple graph $G=(V_G, E_G)$ with vertex set $V_G$ and edge set $E_G$, the mixed graph $widetilde{G}$ is obtained from $G$ by orienting some of its edges. Let $H(widetilde{G})$ denote the Hermitian adjacency matrix of $widetilde{G}$ and $A(G)$
A signed graph $(G, sigma)$ is a graph with a sign attached to each of its edges, where $G$ is the underlying graph of $(G, sigma)$. Let $c(G)$, $alpha(G)$ and $r(G, sigma)$ be the cyclomatic number, the independence number and the rank of the adjace
Let $Phi=(G, varphi)$ be a complex unit gain graph (or $mathbb{T}$-gain graph) and $A(Phi)$ be its adjacency matrix, where $G$ is called the underlying graph of $Phi$. The rank of $Phi$, denoted by $r(Phi)$, is the rank of $A(Phi)$. Denote by $theta(
A complex unit gain graph (or $mathbb{T}$-gain graph) is a triple $Phi=(G, mathbb{T}, varphi)$ ($(G, varphi)$ for short) consisting of a graph $G$ as the underlying graph of $(G, varphi)$, $mathbb{T}= { z in C:|z|=1 } $ is a subgroup of the multiplic
We establish a lower bound for the energy of a complex unit gain graph in terms of the matching number of its underlying graph, and characterize all the complex unit gain graphs whose energy reaches this bound.