ﻻ يوجد ملخص باللغة العربية
Let $V$ be a braided vector space of diagonal type. Let $mathfrak B(V)$, $mathfrak L^-(V)$ and $mathfrak L(V)$ be the Nichols algebra, Nichols Lie algebra and Nichols braided Lie algebra over $V$, respectively. We show that a monomial belongs to $mathfrak L(V)$ if and only if that this monomial is connected. We obtain the basis for $mathfrak L(V)$ of arithmetic root systems and the dimension for $mathfrak L(V)$ of finite Cartan type. We give the sufficient and necessary conditions for $mathfrak B(V) = Foplus mathfrak L^-(V)$ and $mathfrak L^-(V)= mathfrak L(V)$. We obtain an explicit basis of $mathfrak L^ - (V)$ over quantum linear space $V$ with $dim V=2$.
It is shown that if $mathfrak B(V) $ is connected Nichols algebra of diagonal type with $dim V>1$, then $dim (mathfrak L^-(V)) = infty$ $($resp. $ dim (mathfrak L(V)) = infty $$)$ $($ resp. $ dim (mathfrak B(V)) = infty $$)$ if and only if $Delta(mat
Assume that $V$ is a braided vector space with diagonal type. It is shown that a monomial belongs to Nichols braided Lie algebra $mathfrak L(V)$ if and only if this monomial is connected. A basis of Nichols braided Lie algebra and dimension of Nichol
We prove {rm (i)} Nichols algebra $mathfrak B(V)$ of vector space $V$ is finite-dimensional if and only if Nichols braided Lie algebra $mathfrak L(V)$ is finite-dimensional; {rm (ii)} If the rank of connected $V$ is $2$ and $mathfrak B(V)$ is an arit
We establish the relationship among Nichols algebras, Nichols braided Lie algebras and Nichols Lie algebras. We prove two results: (i) Nichols algebra $mathfrak B(V)$ is finite-dimensional if and only if Nichols braided Lie algebra $mathfrak L(V)$ is
In the structure theory of quantized enveloping algebras, the algebra isomorphisms determined by Lusztig led to the first general construction of PBW bases of these algebras. Also, they have important applications to the representation theory of thes