ﻻ يوجد ملخص باللغة العربية
Markov automata combine non-determinism, probabilistic branching, and exponentially distributed delays. This compositional variant of continuous-time Markov decision processes is used in reliability engineering, performance evaluation and stochastic scheduling. Their verification so far focused on single objectives such as (timed) reachability, and expected costs. In practice, often the objectives are mutually dependent and the aim is to reveal trade-offs. We present algorithms to analyze several objectives simultaneously and approximate Pareto curves. This includes, e.g., several (timed) reachability objectives, or various expected cost objectives. We also consider combinations thereof, such as on-time-within-budget objectives - which policies guarantee reaching a goal state within a deadline with at least probability $p$ while keeping the allowed average costs below a threshold? We adopt existing approaches for classical Markov decision processes. The main challenge is to treat policies exploiting state residence times, even for untimed objectives. Experimental results show the feasibility and scalability of our approach.
We introduce synchronizing objectives for Markov decision processes (MDP). Intuitively, a synchronizing objective requires that eventually, at every step there is a state which concentrates almost all the probability mass. In particular, it implies t
A new weak bisimulation semantics is defined for Markov automata that, in addition to abstracting from internal actions, sums up the expected values of consecutive exponentially distributed delays possibly intertwined with internal actions. The resul
We study tree games developed recently by Matteo Mio as a game interpretation of the probabilistic $mu$-calculus. With expressive power comes complexity. Mio showed that tree games are able to encode Blackwell games and, consequently, are not determi
Recently, successful approaches have been made to exploit good-for-MDPs automata (Buchi automata with a restricted form of nondeterminism) for model free reinforcement learning, a class of automata that subsumes good for games automata and the most w
We consider previous models of Timed, Probabilistic and Stochastic Timed Automata, we introduce our model of Timed Automata with Polynomial Delay and we characterize the expressiveness of these models relative to each other.