ﻻ يوجد ملخص باللغة العربية
We study several problems related to graph modification problems under connectivity constraints from the perspective of parameterized complexity: {sc (Weighted) Biconnectivity Deletion}, where we are tasked with deleting~$k$ edges while preserving biconnectivity in an undirected graph, {sc Vertex-deletion Preserving Strong Connectivity}, where we want to maintain strong connectivity of a digraph while deleting exactly~$k$ vertices, and {sc Path-contraction Preserving Strong Connectivity}, in which the operation of path contraction on arcs is used instead. The parameterized tractability of this last problem was posed by Bang-Jensen and Yeo [DAM 2008] as an open question and we answer it here in the negative: both variants of preserving strong connectivity are $sf W[1]$-hard. Preserving biconnectivity, on the other hand, turns out to be fixed parameter tractable and we provide a $2^{O(klog k)} n^{O(1)}$-algorithm that solves {sc Weighted Biconnectivity Deletion}. Further, we show that the unweighted case even admits a randomized polynomial kernel. All our results provide further interesting data points for the systematic study of connectivity-preservation constraints in the parameterized setting.
We provide a simple new randomized contraction approach to the global minimum cut problem for simple undirected graphs. The contractions exploit 2-out edge sampling from each vertex rather than the standard uniform edge sampling. We demonstrate the p
We investigate the parameterized complexity in $a$ and $b$ of determining whether a graph~$G$ has a subset of $a$ vertices and $b$ edges whose removal disconnects $G$, or disconnects two prescribed vertices $s, t in V(G)$.
Graph compression or sparsification is a basic information-theoretic and computational question. A major open problem in this research area is whether $(1+epsilon)$-approximate cut-preserving vertex sparsifiers with size close to the number of termin
A directed graph $D$ is semicomplete if for every pair $x,y$ of vertices of $D,$ there is at least one arc between $x$ and $y.$ viol{Thus, a tournament is a semicomplete digraph.} In the Directed Component Order Connectivity (DCOC) problem, given a d
The tree augmentation problem (TAP) is a fundamental network design problem, in which the input is a graph $G$ and a spanning tree $T$ for it, and the goal is to augment $T$ with a minimum set of edges $Aug$ from $G$, such that $T cup Aug$ is 2-edge-