ﻻ يوجد ملخص باللغة العربية
The task of object viewpoint estimation has been a challenge since the early days of computer vision. To estimate the viewpoint (or pose) of an object, people have mostly looked at object intrinsic features, such as shape or appearance. Surprisingly, informative features provided by other, extrinsic elements in the scene, have so far mostly been ignored. At the same time, contextual cues have been proven to be of great benefit for related tasks such as object detection or action recognition. In this paper, we explore how information from other objects in the scene can be exploited for viewpoint estimation. In particular, we look at object configurations by following a relational neighbor-based approach for reasoning about object relations. We show that, starting from noisy object detections and viewpoint estimates, exploiting the estimated viewpoint and location of other objects in the scene can lead to improved object viewpoint predictions. Experiments on the KITTI dataset demonstrate that object configurations can indeed be used as a complementary cue to appearance-based viewpoint estimation. Our analysis reveals that the proposed context-based method can improve object viewpoint estimation by reducing specific types of viewpoint estimation errors commonly made by methods that only consider local information. Moreover, considering contextual information produces superior performance in scenes where a high number of object instances occur. Finally, our results suggest that, following a cautious relational neighbor formulation brings improvements over its aggressive counterpart for the task of object viewpoint estimation.
Existing techniques to encode spatial invariance within deep convolutional neural networks only model 2D transformation fields. This does not account for the fact that objects in a 2D space are a projection of 3D ones, and thus they have limited abil
Vision based human pose estimation is an non-invasive technology for Human-Computer Interaction (HCI). Direct use of the hand as an input device provides an attractive interaction method, with no need for specialized sensing equipment, such as exoske
In this study, we propose a novel approach to predict the distances of the detected objects in an observed scene. The proposed approach modifies the recently proposed Convolutional Support Estimator Networks (CSENs). CSENs are designed to compute a d
In exploratory tasks involving high-dimensional datasets, dimensionality reduction (DR) techniques help analysts to discover patterns and other useful information. Although scatter plot representations of DR results allow for cluster identification a
Hand-object pose estimation (HOPE) aims to jointly detect the poses of both a hand and of a held object. In this paper, we propose a lightweight model called HOPE-Net which jointly estimates hand and object pose in 2D and 3D in real-time. Our network