ترغب بنشر مسار تعليمي؟ اضغط هنا

An efficient method to estimate sorption isotherm curve coefficients

67   0   0.0 ( 0 )
 نشر من قبل Denys Dutykh
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper deals with an inverse problem applied to the field of building physics to experimentally estimate three sorption isotherm coefficients of a wood fiber material. First, the mathematical model, based on convective transport of moisture, the Optimal Experiment Design (OED) and the experimental set-up are presented. Then measurements of relative humidity within the material are carried out, after searching the OED, which is based on the computation of the sensitivity functions and a priori values of the unknown parameters employed in the mathematical model. The OED enables to plan the experimental conditions in terms of sensor positioning and boundary conditions out of 20 possible designs, ensuring the best accuracy for the identification method and, thus, for the estimated parameter. Two experimental procedures were identified: i) single step of relative humidity from 10% to 75% and ii) multiple steps of relative humidity 10-75-33-75% with an 8-day duration period for each step. For both experiment designs, it has been shown that the sensor has to be placed near the impermeable boundary. After the measurements, the parameter estimation problem is solved using an interior point algorithm to minimize the cost function. Several tests are performed for the definition of the cost function, by using the L^2 or L^infty norm and considering the experiments separately or at the same time. It has been found out that the residual between the experimental data and the numerical model is minimized when considering the discrete Euclidean norm and both experiments separately. It means that two parameters are estimated using one experiment while the third parameter is determined with the other experiment. Two cost functions are defined and minimized for this approach. Moreover, the algorithm requires less than 100 computations of the direct model to obtain the solution. In addition, the OED sensitivity functions enable to capture an approximation of the probability distribution function of the estimated parameters. The determined sorption isotherm coefficients calibrate the numerical model to fit better the experimental data. However, some discrepancies still appear since the model does not take into account the hysteresis effects on the sorption capacity. Therefore, the model is improved proposing a second differential equation for the sorption capacity to take into account the hysteresis between the main adsorption and desorption curves. The OED approach is also illustrated for the estimation of five of the coefficients involved in the hysteresis model. To conclude, the prediction of the model with hysteresis are compared with the experimental observations to illustrate the improvement of the prediction.



قيم البحث

اقرأ أيضاً

103 - Julien Berger 2018
Comparisons of experimental observation of heat and moisture transfer through porous building materials with numerical results have been presented in numerous studies reported in literature. However, some discrepancies have been observed, highlightin g underestimation of sorption process and overestimation of desorption process. Some studies intend to explain the discrepancies by analysing the importance of hysteresis effects as well as carrying out sensitivity analyses on the input parameters as convective transfer coefficients. This article intends to investigate the accuracy and efficiency of the coupled solution by adding advective transfer of both heat and moisture in the physical model. In addition, the efficient Scharfetter and Gummel numerical scheme is proposed to solve the system of advection-diffusion equations, which has the advantages of being well-balanced and asymptotically preserving. Moreover, the scheme is particularly efficient in terms of accuracy and reduction of computational time when using large spatial discretisation parameters. Several linear and non-linear cases are studied to validate the method and highlight its specific features. At the end, an experimental benchmark from the literature is considered. The numerical results are compared to the experimental data for a pure diffusive model and also for the proposed model. The latter presents better agreement with the experimental data. The influence of the hysteresis effects on the moisture capacity is also studied, by adding a third differential equation.
A simple and efficient method for characterization of multidimensional Gaussian states is suggested and experimentally demonstrated. Our scheme shows analogies with tomography of finite dimensional quantum states, with the covariance matrix playing t he role of the density matrix and homodyne detection providing Stern-Gerlach-like projections. The major difference stems from a different character of relevant noises: while the statistics of Stern-Gerlach-like measurements is governed by binomial statistics, the detection of quadrature variances correspond to chi-square statistics. For Gaussian and near Gaussian states the suggested method provides, compared to standard tomography techniques, more stable and reliable reconstructions. In addition, by putting together reconstruction methods for Gaussian and arbitrary states, we obtain a tool to detect the non-Gaussian character of optical signals.
We present a generic technique, automated by computer-algebra systems and available as open-source software cite{scuff-em}, for efficient numerical evaluation of a large family of singular and nonsingular 4-dimensional integrals over triangle-product domains, such as those arising in the boundary-element method (BEM) of computational electromagnetism. To date, practical implementation of BEM solvers has often required the aggregation of multiple disparate integral-evaluation schemes to treat all of the distinct types of integrals needed for a given BEM formulation; in contrast, our technique allows many different types of integrals to be handled by the emph{same} algorithm and the same code implementation. Our method is a significant generalization of the Taylor--Duffy approach cite{Taylor2003,Duffy1982}, which was originally presented for just a single type of integrand; in addition to generalizing this technique to a broad class of integrands, we also achieve a significant improvement in its efficiency by showing how the emph{dimension} of the final numerical integral may often be reduced by one. In particular, if $n$ is the number of common vertices between the two triangles, in many cases we can reduce the dimension of the integral from $4-n$ to $3-n$, obtaining a closed-form analytical result for $n=3$ (the common-triangle case).
We present a new technique for transferring momentum and velocity between particles and grid with Particle-In-Cell (PIC) calculations which we call Affine-Particle-In-Cell (APIC). APIC represents particle velocities as locally affine, rather than loc ally constant as in traditional PIC. We show that this representation allows APIC to conserve linear and angular momentum across transfers while also dramatically reducing numerical diffusion usually associated with PIC. Notably, conservation is achieved with lumped mass, as opposed to the more commonly used Fluid Implicit Particle (FLIP) transfers which require a full mass matrix for exact conservation. Furthermore, unlike FLIP, APIC retains a filtering property of the original PIC and thus does not accumulate velocity modes on particles as FLIP does. In particular, we demonstrate that APIC does not experience velocity instabilities that are characteristic of FLIP in a number of Material Point Method (MPM) hyperelasticity calculations. Lastly, we demonstrate that when combined with the midpoint rule for implicit update of grid momentum that linear and angular momentum are exactly conserved.
The estimate of coefficients of the Convection-Diffusion Equation (CDE) from experimental measurements belongs in the category of inverse problems, which are known to come with issues of ill-conditioning or singularity. Here we concentrate on a parti cular class that can be reduced to a linear algebraic problem, with explicit solution. Ill-conditioning of the problem corresponds to the vanishing of one eigenvalue of the matrix to be inverted. The comparison with algorithms based upon matching experimental data against numerical integration of the CDE sheds light on the accuracy of the parameter estimation procedures, and suggests a path for a more precise assessment of the profiles and of the related uncertainty. Several instances of the implementation of the algorithm to real data are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا