ﻻ يوجد ملخص باللغة العربية
This article improves the existing proven rates of regret decay in optimal policy estimation. We give a margin-free result showing that the regret decay for estimating a within-class optimal policy is second-order for empirical risk minimizers over Donsker classes, with regret decaying at a faster rate than the standard error of an efficient estimator of the value of an optimal policy. We also give a result from the classification literature that shows that faster regret decay is possible via plug-in estimation provided a margin condition holds. Four examples are considered. In these examples, the regret is expressed in terms of either the mean value or the median value; the number of possible actions is either two or finitely many; and the sampling scheme is either independent and identically distributed or sequential, where the latter represents a contextual bandit sampling scheme.
In functional linear regression, the slope ``parameter is a function. Therefore, in a nonparametric context, it is determined by an infinite number of unknowns. Its estimation involves solving an ill-posed problem and has points of contact with a ran
We show that diffusion processes can be exploited to study the posterior contraction rates of parameters in Bayesian models. By treating the posterior distribution as a stationary distribution of a stochastic differential equation (SDE), posterior co
We study minimax estimation of two-dimensional totally positive distributions. Such distributions pertain to pairs of strongly positively dependent random variables and appear frequently in statistics and probability. In particular, for distributions
This paper introduces a new approach to the study of rates of convergence for posterior distributions. It is a natural extension of a recent approach to the study of Bayesian consistency. In particular, we improve on current rates of convergence for
This paper deals with the estimation of a probability measure on the real line from data observed with an additive noise. We are interested in rates of convergence for the Wasserstein metric of order $pgeq 1$. The distribution of the errors is assume