ﻻ يوجد ملخص باللغة العربية
A new algorithm is developed allowing the Monte Carlo study of a 1 + 1 dimensional theory in real time. The main algorithmic development is to avoid the explicit calculation of the Jacobian matrix and its determinant in the update process. This improvement has a wide applicability and reduces the cost of the update in thimble-inspired calculations from O(N^3) to less than O(N^2). As an additional feature, the algorithm leads to improved Monte Carlo proposals. We exemplify the use of the algorithm to the real time dynamics of a scalar {phi}^4 theory with weak and strong couplings.
A trial application of the method of Feynman-Kleinert approximants is made to perturbation series arising in connection with the lattice Schwinger model. In extrapolating the lattice strong-coupling series to the weak-coupling continuum limit, the ap
The coupled cluster method has been applied to the eigenvalue problem lattice Hamiltonian QCD (without quarks) for SU(2) gauge fields in two space dimensions. Using a recently presented new formulation and the truncation prescription of Guo et al.
In Monte Carlo simulation, lattice field theory with a $theta$ term suffers from the sign problem. This problem can be circumvented by Fourier-transforming the topological charge distribution $P(Q)$. Although this strategy works well for small latt
We have studied the link-integration method for the improved actions. With this method the $eta$ parameter in the medium to strong coupling regions is obtained. Effects of the self-energy terms for the $eta$ parameters are small in the regions of $be
This letter reports on a new procedure for the lattice spacing setting that takes advantage of the very precise determination of the strong coupling in Taylor scheme. Although it can be applied for the physical scale setting with the experimental val