ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological domain walls in helimagnets

170   0   0.0 ( 0 )
 نشر من قبل Dennis Meier
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A magnetic helix arises in chiral magnets with a wavelength set by the spin-orbit coupling. We show that the helimagnetic order is a nanoscale analog to liquid crystals, exhibiting topological structures and domain walls that are distinctly different from classical magnets. Using magnetic force microscopy and micromagnetic simulations, we demonstrate that - similar to cholesteric liquid crystals - three fundamental types of domain walls are realized in the helimagnet FeGe. We reveal the micromagnetic wall structure and show that they can carry a finite skyrmion charge, permitting coupling to spin currents and contributions to a topological Hall effect. Our study establishes a new class of magnetic nano-objects with non-trivial topology, opening the door to innovative device concepts based on helimagnetic domain walls.



قيم البحث

اقرأ أيضاً

Recent experimental breakthrough in magnetic Weyl semimetals have inspired exploration on the novel effects of various magnetic structures in these materials. Here we focus on a domain wall structure which connects two uniform domains with different magnetization directions. We study the topological superconducting state in presence of an s-wave superconducting pairing potential. By tuning the chemical potential, we can reach a topological state, where a chiral Majorana mode or zero-energy Majorana bound state is localized at the edges of the domain walls. This property allows a convenient braiding operation of Majorana modes by controlling the dynamics of domain walls.
The order parameter of superconducting pairs penetrating an inhomogeneous magnetic material can acquire a long range triplet component (LRTC) with non-zero spin projection. This state has been predicted and generated recently in proximity systems and Josephson junctions. We show using an analytically derived domain wall of an exchange spring how the LRTC emerges and can be tuned with the twisting of the magnetization. We also introduce a new kind of Josephson current reversal, the triplet $0-pi$ transition, that can be observed in one and the same system either by tuning the domain wall or by varying temperature.
180 - F.X. Xiang , X.L. Wang , 2014
Three-dimensional (3D) topological insulators (TIs) are new forms of quantum matter that are characterized by their insulating bulk state and exotic metallic surface state, which hosts helical Dirac fermions1-2. Very recently, BiTeCl, one of the pola r semiconductors, has been discovered by angle-resolved photoemission spectroscopy to be the first strong inversion asymmetric topological insulator (SIATI). In contrast to the previously discovered 3D TIs with inversion symmetry, the SIATI are expected to exhibit novel topological phenomena, including crystalline-surface-dependent topological surface states, intrinsic topological p-n junctions, and pyroelectric and topological magneto-electric effects3. Here, we report the first transport evidence for the robust topological surface state in the SIATI BiTeCl via observation of Shubnikov-de Haas (SdH) oscillations, which exhibit the 2D nature of the Fermi surface and pi Berry phase. The n = 1 Landau quantization of the topological surface state is observed at B . 12 T without gating, and the Fermi level is only 58.8 meV above the Dirac point, which gives rise to small effective mass, 0.055me, and quite large mobility, 4490 cm2s-1. Our findings will pave the way for future transport exploration of other new topological phenomena and potential applications for strong inversion asymmetric topological insulators.
Motivated by the discovery of the quantum anomalous Hall effect in Cr-doped ce{(Bi,Sb)2Te3} thin films, we study the generic states for magnetic topological insulators and explore the physical properties for both magnetism and itinerant electrons. Fi rst-principles calculations are exploited to investigate the magnetic interactions between magnetic Co atoms adsorbed on the ce{Bi2Se3} (111) surface. Due to the absence of inversion symmetry on the surface, there are Dzyaloshinskii-Moriya-like twisted spin interactions between the local moments of Co ions. These nonferromagnetic interactions twist the collinear spin configuration of the ferromagnet and generate various magnetic orders beyond a simple ferromagnet. Among them, the spin spiral state generates alternating counterpropagating modes across each period of spin states, and the skyrmion lattice even supports a chiral mode around the core of each skyrmion. The skyrmion lattice opens a gap at the surface Dirac point, resulting in the anomalous Hall effect. These results may inspire further experimental investigation of magnetic topological insulators.
The anomalous Hall effect (AHE), a Hall signal occurring without an external magnetic field, is one of the most significant phenomena. However, understanding the AHE mechanism has been challenging and largely restricted to ferromagnetic metals. Here, we investigate the recently discovered AHE in the chiral antiferromagnet Mn3Sn by measuring a thermal analog of the AHE, known as an anomalous thermal Hall effect (ATHE). The amplitude of the ATHE scales with the anomalous Hall conductivity of Mn3Sn over a wide temperature range, demonstrating that the AHE of Mn3Sn arises from a dissipationless intrinsic mechanism associated with the Berry curvature. Moreover, we find that the dissipationless AHE is significantly stabilized by shifting the Fermi level toward the magnetic Weyl points. Thus, in Mn3Sn, the Berry curvature emerging from the proposed magnetic Weyl fermion state is a key factor for the observed AHE and ATHE.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا