ﻻ يوجد ملخص باللغة العربية
The semi-inclusive deep inelastic electron scattering off transversely polarized $^3$He, i.e. the process, $e + vec{^3 {rm He}} to e + h+X$, with $h$ a detected fast hadron, is studied beyond the plane wave impulse approximation. To this end, a distorted spin-dependent spectral function of a nucleon inside an A=3 nucleus is actually evaluated through a generalized eikonal approximation, in order to take into account the final state interactions between the hadronizing system and the (A-1) nucleon spectator one. Our realistic description of both nuclear target and final state is a substantial step forward for achieving a reliable extraction of the Sivers and Collins single spin asymmetries of the free neutron. To illustrate how and to what extent the model dependence due to the treatment of the nuclear effects is under control, we apply our approach to the extraction procedure of the neutron single spin asymmetries from those measured for $^3$He for values of the kinematical variables relevant both for forthcoming experiments at Jefferson Lab and, with an exploratory purpose, for the future Electron Ion Collider.
We report the first measurement of target single-spin asymmetries (A$_N$) in the inclusive hadron production reaction, $e~$+$~^3text{He}^{uparrow}rightarrow h+X$, using a transversely polarized $^3$He target. The experiment was conducted at Jefferson
We report the measurement of beam-target double-spin asymmetries ($A_text{LT}$) in the inclusive production of identified hadrons, $vec{e}~$+$~^3text{He}^{uparrow}rightarrow h+X$, using a longitudinally polarized 5.9 GeV electron beam and a transvers
We report the first measurement of target single spin asymmetries in the semi-inclusive $^3{He}(e,epi^pm)X$ reaction on a transversely polarized target. The experiment, conducted at Jefferson Lab using a 5.9 GeV electron beam, covers a range of 0.14
We report the first measurement of target single spin asymmetries of charged kaons produced in semi-inclusive deep inelastic scattering of electrons off a transversely polarized $^3{rm{He}}$ target. Both the Collins and Sivers moments, which are rela
It is argued that final state enhancements in production reactions at large momentum transfers, such as pp -> K^+ Lambda p, are primarily sensitive to the position of a virtual bound state pole in the Lambda p system rather than the Lambda p scatteri