Robust Smartphone App Identification Via Encrypted Network Traffic Analysis


الملخص بالإنكليزية

The apps installed on a smartphone can reveal much information about a user, such as their medical conditions, sexual orientation, or religious beliefs. Additionally, the presence or absence of particular apps on a smartphone can inform an adversary who is intent on attacking the device. In this paper, we show that a passive eavesdropper can feasibly identify smartphone apps by fingerprinting the network traffic that they send. Although SSL/TLS hides the payload of packets, side-channel data such as packet size and direction is still leaked from encrypted connections. We use machine learning techniques to identify smartphone apps from this side-channel data. In addition to merely fingerprinting and identifying smartphone apps, we investigate how app fingerprints change over time, across devices and across differe

تحميل البحث