ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining Anisotropic Lorentz Violation via the Spectral-Lag Transition of GRB 160625B

143   0   0.0 ( 0 )
 نشر من قبل Jun-Jie Wei Dr.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Violations of Lorentz invariance can lead to an energy-dependent vacuum dispersion of light, which results in arrival-time differences of photons arising with different energies from a given transient source. In this work, direction-dependent dispersion constraints are obtained on nonbirefringent Lorentz-violating effects, using the observed spectral lags of the gamma-ray burst GRB 160625B. This burst has unusually large high-energy photon statistics, so we can obtain constraints from the true spectral time lags of bunches of high-energy photons rather than from the rough time lag of a single highest-energy photon. Also, GRB 160625B is the only burst to date having a well-defined transition from positive lags to negative lags, which provides a unique opportunity to distinguish Lorentz-violating effects from any source-intrinsic time lag in the emission of photons of different energy bands. Our results place comparatively robust two-sided constraints on a variety of isotropic and anisotropic coefficients for Lorentz violation, including first bounds on Lorentz-violating effects from operators of mass dimension ten in the photon sector.



قيم البحث

اقرأ أيضاً

Possible violations of Lorentz invariance (LIV) have been investigated for a long time using the observed spectral lags of gamma-ray bursts (GRBs). However, these generally have relied on using a single photon in the highest energy range. Furthermore , the search for LIV lags has been hindered by our ignorance concerning the intrinsic time lag in different energy bands. GRB 160625B, the only burst so far with a well-defined transition from $positive$ lags to $negative$ lags provides a unique opportunity to put new constraints on LIV. Using multi-photon energy bands we consider the contributions to the observed spectral lag from both the intrinsic time lag and the lag by LIV effects, and assuming the intrinsic time lag to have a positive dependence on the photon energy, we obtain robust limits on LIV by directly fitting the spectral lag data of GRB 160625B. Here we show that these robust limits on the quantum gravity energy scales are $E_{rm QG,1}geq0.5times10^{16}$ GeV for the linear, and $E_{rm QG,2}geq1.4times10^{7}$ GeV for the quadratic LIV effects, respectively. In addition, we give for the first time a reasonable formulation of the intrinsic energy-dependent time lag.
The spectral lags of gamma-ray bursts (GRBs) have been viewed as the most promising probes of the possible violations of Lorentz invariance (LIV). However, these constraints usually depend on the assumption of the unknown intrinsic time lag in differ ent energy bands and the use of a single highest-energy photon. A new approach to test the LIV effects has been proposed by directly fitting the spectral lag behavior of a GRB with a well-defined transition from positive lags to negative lags. This method simultaneously provides a reasonable formulation of the intrinsic time lag and robust lower limits on the quantum-gravity energy scales ($E_{rm QG}$). In this work, we perform a global fitting to the spectral lag data of GRB~190114C by considering the possible LIV effects based on a Bayesian approach. We then derive limits on $E_{rm QG}$ and the coefficients of the Standard Model Extension. The Bayes factors output in our analysis shows a very strong evidence for the spectral-lag transition in GRB~190114C. Our constraints on a variety of isotropic and anisotropic coefficients for LIV are somewhat weaker than existing bounds, but they can be viewed as comparatively robust and have the promise to complement existing LIV constraints. The observations of GRBs with higher-energy emissions and higher temporal resolutions will contribute to a better formulation of the intrinsic time lag and more rigorous LIV constraints in the dispersive photon sector.
A number of works have claimed detections of a turn-over in the spectral lag data for individual Gamma-Ray Bursts (GRBs), caused by an energy-dependent speed of light, which could be a possible manifestation of Lorentz invariance violation (LIV). Her e, we stack the spectral lag data from a total of 37 GRBs (with a total of 91 measurements), to verify if the combined data is consistent with a unified model consisting of intrinsic astrophysical emission, along with another contribution due to LIV. We then carry out Bayesian model comparison to ascertain if this combined spectral lag data shows a preference for an energy-dependent speed of light, as compared to only an intrinsic astrophysical emission mechanism. We do not find a decisive evidence for such an energy-dependent speed of light for two different models of LIV. When we assume a constant intrinsic lag coupled with an unknown intrinsic scatter, we do not find any evidence for LIV. However, when we use GRB-dependent parameters to model the intrinsic emission, we get decisive evidence for LIV violation. We then carry out a search for LIV Standard Model Extension using this dataset as well as an independent search using a separate dataset consisting of rest-frame spectral lags. Finally, none of the models considered here with any of the aforementioned assumptions provide a good fit to the stacked spectral lag data, indicating that there is still missing Physics in the model for intrinsic spectral lags.
180 - Michael Daniel 2015
The assumption of Lorentz invariance is one of the founding principles of Modern Physics and violation of it would have profound implications to our understanding of the universe. For instance, certain theories attempting a unified theory of quantum gravity predict there could be an effective refractive index of the vacuum; the introduction of an energy dependent dispersion to photons could in turn lead to an observable Lorentz invariance violation signature. Whilst a very small effect on local scales the effect will be cumulative, and so for very high energy particles that travel very large distances the difference in arrival times could become sufficiently large to be detectable. This proceedings will look at testing for such Lorentz invariance violation (LIV) signatures in the astronomical lightcurves of gamma-ray emitting objects, with particular notice being given to the prospects for LIV testing with, the next generation observatory, the Cherenkov Telescope Array.
It has been speculated that Lorentz-invariance violation (LIV) might be generated by quantum-gravity (QG) effects. As a consequence, particles may not travel at the universal speed of light. In particular, superluminal extragalactic neutrinos would r apidly lose energy via the bremssthralung of electron-positron pairs (nu -> nu e+ e-), damping their initial energy into electromagnetic cascades, a figure constrained by Fermi-LAT data. We show that the two cascade neutrino events with energies around 1 PeV recently detected by IceCube -if attributed to extragalactic diffuse events, as it appears likely- can place the strongest bound on LIV in the neutrino sector, namely delta =(v^2-1) < O(10^(-18)), corresponding to a QG scale M_QG ~ 10^5 M_Pl (M_QG >~ 10^(-4) M_Pl) for a linear (quadratic) LIV, at least for models inducing superluminal neutrino effects (delta > 0).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا