ﻻ يوجد ملخص باللغة العربية
Ground-based whole sky imagers are popular for monitoring cloud formations, which is necessary for various applications. We present two new Wide Angle High-Resolution Sky Imaging System (WAHRSIS) models, which were designed especially to withstand the hot and humid climate of Singapore. The first uses a fully sealed casing, whose interior temperature is regulated using a Peltier cooler. The second features a double roof design with ventilation grids on the sides, allowing the outside air to flow through the device. Measurements of temperature inside these two devices show their ability to operate in Singapore weather conditions. Unlike our original WAHRSIS model, neither uses a mechanical sun blocker to prevent the direct sunlight from reaching the camera; instead they rely on high-dynamic-range imaging (HDRI) techniques to reduce the glare from the sun.
Ground-based Whole Sky Imagers (WSIs) are increasingly being used for various remote sensing applications. While the fundamental requirements of a WSI are to make it climate-proof with an ability to capture high resolution images, cost also plays a s
Cloud imaging using ground-based whole sky imagers is essential for a fine-grained understanding of the effects of cloud formations, which can be useful in many applications. Some such imagers are available commercially, but their cost is relatively
Ground-based whole sky imagers (WSIs) can provide localized images of the sky of high temporal and spatial resolution, which permits fine-grained cloud observation. In this paper, we show how images taken by WSIs can be used to estimate solar radiati
Sky/cloud images obtained from ground-based sky-cameras are usually captured using a fish-eye lens with a wide field of view. However, the sky exhibits a large dynamic range in terms of luminance, more than a conventional camera can capture. It is th
This paper considers the problem of generating an HDR image of a scene from its LDR images. Recent studies employ deep learning and solve the problem in an end-to-end fashion, leading to significant performance improvements. However, it is still hard