We study the magnetic properties of quark matter in the NJL model with the tensor interaction. The spin-polarized phase given by the tensor interaction remains even when the quark mass is zero, while the phase given by the axial vector interaction disappears. There are two kinds of spin-polarized phases: one appears in the chiral-broken phase, and the other appears in the chiral-restored phase where the quark mass is zero. The latter phase can appear independently of the strength of the tensor interaction.