ﻻ يوجد ملخص باللغة العربية
We report on the ab initio discovery of a novel putative ground state for quasi two-dimensional TiO$_2$ through a structural search using the minima hopping method with an artificial neural network potential. The structure is based on a honeycomb lattice and is energetically lower than the experimentally reported lepidocrocite sheet by 7~meV/atom, and merely 13~meV/atom higher in energy than the ground state rutile bulk structure. According to our calculations, the hexagonal sheet is stable against mechanical stress, it is chemically inert and can be deposited on various substrates without disrupting the structure. Its properties differ significantly from all known TiO$_2$ bulk phases with a large gap of 5.05~eV that can be tuned through strain engineering.
Growth of two-dimensional metals has eluded materials scientists since the discovery of the atomically thin graphene and other covalently bound 2D materials. Here, we report a two-atom-thick hexagonal copper-gold alloy, grown through thermal evaporat
We report on the discovery of a 2-dimensional copper-bismuth nano sheet from textit{ab initio} calculations, which we call cubine. According to our predictions, single layers of cubine can be isolated from the recently reported high-pressure CuBi bul
Knowledge of the molecular frontier levels alignment in the ground state can be used to predict the photocatalytic activity of an interface. The position of the adsorbates highest occupied molecular orbital (HOMO) levels relative to the substrates va
The discovery of graphene makes it highly desirable to seek new two-dimensional materials. Through first-principles investigation, we predict two-dimensional materials of ReN$_{2}$: honeycomb and tetragonal structures. The phonon spectra establish th
The hyperfine structure of the interstitial muonium (Mu) in rutile (TiO$_2$, weakly $n$-type) has been identified by means of a muon spin rotation technique. The angle-resolved hyperfine parameters exhibit a tetragonal anisotropy within the $ab$ plan