ﻻ يوجد ملخص باللغة العربية
We study the problem of approximating the largest root of a real-rooted polynomial of degree $n$ using its top $k$ coefficients and give nearly matching upper and lower bounds. We present algorithms with running time polynomial in $k$ that use the top $k$ coefficients to approximate the maximum root within a factor of $n^{1/k}$ and $1+O(tfrac{log n}{k})^2$ when $kleq log n$ and $k>log n$ respectively. We also prove corresponding information-theoretic lower bounds of $n^{Omega(1/k)}$ and $1+Omegaleft(frac{log frac{2n}{k}}{k}right)^2$, and show strong lower bounds for noisy version of the problem in which one is given access to approximate coefficients. This problem has applications in the context of the method of interlacing families of polynomials, which was used for proving the existence of Ramanujan graphs of all degrees, the solution of the Kadison-Singer problem, and bounding the integrality gap of the asymmetric traveling salesman problem. All of these involve computing the maximum root of certain real-rooted polynomials for which the top few coefficients are accessible in subexponential time. Our results yield an algorithm with the running time of $2^{tilde O(sqrt[3]n)}$ for all of them.
We show algorithms for computing representative families for matroid intersections and use them in fixed-parameter algorithms for set packing, set covering, and facility location problems with multiple matroid constraints. We complement our tractability results by hardness results.
We revisit a fundamental problem in string matching: given a pattern of length m and a text of length n, both over an alphabet of size $sigma$, compute the Hamming distance between the pattern and the text at every location. Several $(1+epsilon)$-app
We study approximation algorithms for variants of the emph{median string} problem, which asks for a string that minimizes the sum of edit distances from a given set of $m$ strings of length $n$. Only the straightforward $2$-approximation is known for
A bond of a graph $G$ is an inclusion-wise minimal disconnecting set of $G$, i.e., bonds are cut-sets that determine cuts $[S,Vsetminus S]$ of $G$ such that $G[S]$ and $G[Vsetminus S]$ are both connected. Given $s,tin V(G)$, an $st$-bond of $G$ is a
We present a randomized approximation scheme for the permanent of a matrix with nonnegative entries. Our scheme extends a recursive rejection sampling method of Huber and Law (SODA 2008) by replacing the upper bound for the permanent with a linear co