ترغب بنشر مسار تعليمي؟ اضغط هنا

Effective field theories for van der Waals interactions

188   0   0.0 ( 0 )
 نشر من قبل Jaume Tarr\\'us Castell\\`a
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Van der Waals interactions between two neutral but polarizable systems at a separation $R$ much larger than the typical size of the systems are at the core of a broad sweep of contemporary problems in settings ranging from atomic, molecular and condensed matter physics to strong interactions and gravity. We reexamine the dispersive van der Waals interactions between two hydrogen atoms. The novelty of the analysis resides in the usage of nonrelativistic EFTs of QED. In this framework, the van der Waals potential acquires the meaning of a matching coefficient in an EFT suited to describe the low energy dynamics of an atom pair. It may be computed systematically as a series in $R$ times some typical atomic scale and in the fine structure constant $alpha$. The van der Waals potential gets short range contributions and radiative corrections, which we compute in dimensional regularization and renormalize here for the first time. Results are given in $d$ spacetime dimensions. One can distinguish among different regimes depending on the relative size between $1/R$ and the typical atomic bound state energy $malpha^2$. Each regime is characterized by a specific hierarchy of scales and a corresponding tower of EFTs. The short distance regime is characterized by $1/R gg malpha^2$ and the LO van der Waals potential is the London potential. We compute also NNNLO corrections. In the long distance regime we have $1/Rll malpha^2$. In this regime, the van der Waals potential contains contact terms, which are parametrically larger than the Casimir-Polder potential that describes the potential at large distances. In the EFT the Casimir-Polder potential counts as a NNNLO effect. In the intermediate distance regime, $1/Rsim malpha^2$, a significantly more complex potential is obtained which we compare with the two previous limiting cases. We conclude commenting on the hadronic van der Waals case.



قيم البحث

اقرأ أيضاً

The van der Waals interactions between two parallel graphitic nanowiggles (GNWs) are calculated using the coupled dipole method (CDM). The CDM is an efficient and accurate approach to determine such interactions explicitly by taking into account the discrete atomic structure. Our findings show that the van der Waals forces vary from attraction to repulsion as nanoribbons move along their lengths with respect to each other. This feature leads to a number of stable and unstable positions of the system during the movement process. These positions can be tuned by changing the length of GNW. Moreover, the influence of the thermal effect on the van der Waals interactions is also extensively investigated. This work would give good direction for both future theoretical and experimental studies.
The effect of an implicit medium on dispersive interactions of particle pairs is discussed and simple expressions for the correction relative to vacuum are derived. We show that a single point Gauss quadrature leads to the intuitive result that the v acuum van der Waals $C_6$ coefficient is screened by the permittivity squared of the environment evaluated near to the resonance frequencies of the interacting particles. This approximation should be particularly relevant if the medium is transparent at these frequencies. In the manuscript, we provide simple models and sets of parameters for commonly used solvents, atoms and small molecules.
In inhomogeneous dielectric media the divergence of the electromagnetic stress is related to the gradients of varepsilon and mu, which is a consequence of Maxwells equations. Investigating spherically symmetric media we show that this seemingly unive rsal relationship is violated for electromagnetic vacuum forces such as the generalized van der Waals and Casimir forces. The stress needs to acquire an additional anomalous pressure. The anomaly is a result of renormalization, the need to subtract infinities in the stress for getting a finite, physical force. The anomalous pressure appears in the stress in media like dark energy appears in the energy-momentum tensor in general relativity. We propose and analyse an experiment to probe the van der Waals anomaly with ultracold atoms. The experiment may not only test an unusual phenomenon of quantum forces, but also an analogue of dark energy, shedding light where nothing is known empirically.
The van der Waals heterostructures are a fertile frontier for discovering emergent phenomena in condensed matter systems. They are constructed by stacking elements of a large library of two-dimensional materials, which couple together through van der Waals interactions. However, the number of possible combinations within this library is staggering, and fully exploring their potential is a daunting task. Here we introduce van der Waals metamaterials to rapidly prototype and screen their quantum counterparts. These layered metamaterials are designed to reshape the flow of ultrasound to mimic electron motion. In particular, we show how to construct analogues of all stacking configurations of bilayer and trilayer graphene through the use of interlayer membranes that emulate van der Waals interactions. By changing the membranes density and thickness, we reach coupling regimes far beyond that of conventional graphene. We anticipate that van der Waals metamaterials will explore, extend, and inform future electronic devices. Equally, they allow the transfer of useful electronic behavior to acoustic systems, such as flat bands in magic-angle twisted bilayer graphene, which may aid the development of super-resolution ultrasound imagers.
The exfoliation of two naturally occurring van der Waals minerals, graphite and molybdenite, arouse an unprecedented level of interest by the scientific community and shaped a whole new field of research: 2D materials research. Several years later, t he family of van der Waals materials that can be exfoliated to isolate 2D materials keeps growing, but most of them are synthetic. Interestingly, in nature plenty of naturally occurring van der Waals minerals can be found with a wide range of chemical compositions and crystal structures whose properties are mostly unexplored so far. This Perspective aims to provide an overview of different families of van der Waals minerals to stimulate their exploration in the 2D limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا