ﻻ يوجد ملخص باللغة العربية
We investigate multiplicity and symmetry properties of higher eigenvalues and eigenfunctions of the $p$-Laplacian under homogeneous Dirichlet boundary conditions on certain symmetric domains $Omega subset mathbb{R}^N$. By means of topological arguments, we show how symmetries of $Omega$ help to construct subsets of $W_0^{1,p}(Omega)$ with suitably high Krasnoselskiu{i} genus. In particular, if $Omega$ is a ball $B subset mathbb{R}^N$, we obtain the following chain of inequalities: $$ lambda_2(p;B) leq dots leq lambda_{N+1}(p;B) leq lambda_ominus(p;B). $$ Here $lambda_i(p;B)$ are variational eigenvalues of the $p$-Laplacian on $B$, and $lambda_ominus(p;B)$ is the eigenvalue which has an associated eigenfunction whose nodal set is an equatorial section of $B$. If $lambda_2(p;B)=lambda_ominus(p;B)$, as it holds true for $p=2$, the result implies that the multiplicity of the second eigenvalue is at least $N$. In the case $N=2$, we can deduce that any third eigenfunction of the $p$-Laplacian on a disc is nonradial. The case of other symmetric domains and the limit cases $p=1$, $p=infty$ are also considered.
We consider general second order uniformly elliptic operators subject to homogeneous boundary conditions on open sets $phi (Omega)$ parametrized by Lipschitz homeomorphisms $phi $ defined on a fixed reference domain $Omega$. Given two open sets $phi
We obtain asymptotic estimates for the eigenvalues of the p(x)-Laplacian defined consistently with a homogeneous notion of first eigenvalue recently introduced in the literature.
We show that zero is not an eigenvalue of the conformal Laplacian for generic Riemannian metrics. We also discuss non-compactness for sequences of metrics with growing number of negative eigenvalues of the conformal Laplacian.
We study the symmetry properties of the spectra of normalized Laplacians on signed graphs. We find a new machinery that generates symmetric spectra for signed graphs, which includes bipartiteness of unsigned graphs as a special case. Moreover, we pro
On a convex bounded Euclidean domain, the ground state for the Laplacian with Neumann boundary conditions is a constant, while the Dirichlet ground state is log-concave. The Robin eigenvalue problem can be considered as interpolating between the Diri