ﻻ يوجد ملخص باللغة العربية
Reachability analysis for hybrid systems is an active area of development and has resulted in many promising prototype tools. Most of these tools allow users to express hybrid system as automata with a set of ordinary differential equations (ODEs) associated with each state, as well as rules for transitions between states. Significant effort goes into developing and verifying and correctly implementing those tools. As such, it is desirable to expand the scope of applicability tools of such as far as possible. With this goal, we show how compile-time transformations can be used to extend the basic hybrid ODE formalism traditionally supported in hybrid reachability tools such as SpaceEx or Flow*. The extension supports certain types of partial derivatives and equational constraints. These extensions allow users to express, among other things, the Euler-Lagrangian equation, and to capture practically relevant constraints that arise naturally in mechanical systems. Achieving this level of expressiveness requires using a binding time-analysis (BTA), program differentiation, symbolic Gaussian elimination, and abstract interpretation using interval analysis. Except for BTA, the other components are either readily available or can be easily added to most reachability tools. The paper therefore focuses on presenting both the declarative and algorithmic specifications for the BTA phase, and establishes the soundness of the algorithmic specifications with respect to the declarative one.
Analyzing array-based computations to determine data dependences is useful for many applications including automatic parallelization, race detection, computation and communication overlap, verification, and shape analysis. For sparse matrix codes, ar
Smooth dynamics interrupted by discontinuities are known as hybrid systems and arise commonly in nature. Latent ODEs allow for powerful representation of irregularly sampled time series but are not designed to capture trajectories arising from hybrid
The asymptotic stable region and long-time decay rate of solutions to linear homogeneous Caputo time fractional ordinary differential equations (F-ODEs) are known to be completely determined by the eigenvalues of the coefficient matrix. Very differen
Neural Ordinary Differential Equations (ODEs) are elegant reinterpretations of deep networks where continuous time can replace the discrete notion of depth, ODE solvers perform forward propagation, and the adjoint method enables efficient, constant m
One of the most attractive features of untyped languages is the flexibility in term creation and manipulation. However, with such power comes the responsibility of ensuring the correctness of these operations. A solution is adding run-time checks to