ﻻ يوجد ملخص باللغة العربية
Multiparty Session Types (MPST) are a well-established typing discipline for message-passing processes interacting on sessions involving two or more participants. Session typing can ensure desirable properties: absence of communication errors and deadlocks, and protocol conformance. However, existing MPST works provide a subject reduction result that is arguably (and sometimes, surprisingly) restrictive: it only holds for typing contexts with strong duality constraints on the interactions between pairs of participants. Consequently, many intuitively correct examples cannot be typed and/or cannot be proved type-safe. We illustrate some of these examples, and discuss the reason for these limitations. Then, we outline a novel MPST typing system that removes these restrictions.
Duality is a central concept in the theory of session types. Since a flaw was found in the original definition of duality for recursive types, several other definitions have been published. As their connection is not obvious, we compare the competing
Modern web programming involves coordinating interactions between browser clients and a server. Typically, the interactions in web-based distributed systems are informally described, making it hard to ensure correctness, especially communication safe
Session types are a rich type discipline, based on linear types, that lifts the sort of safety claims that come with type systems to communications. However, web-based applications and microservices are often written in a mix of languages, with type
This paper addresses a problem found within the construction of Service Oriented Architecture: the adaptation of service protocols with respect to functional redundancy and heterogeneity of global communication patterns. We utilise the theory of Mult
We (re)define session types as projections of process behaviors with respect to the communication channels they use. In this setting, we give session types a semantics based on fair testing. The outcome is a unified theory of behavioral types that sh